Page 242 - Izobraževanje v dobi generativne umetne inteligence
P. 242

Alenka Lipovec in Barbara Arcet

                  ustvarja priložnosti za bolj prilagojen pristop k učenju, kar obeta velike pre-
                  mike v izobraževanju matematike in širše.
                    Vse naštete prednosti GUI se lahko v izobraževalnem procesu udejanjijo le,
                  če učitelji in učenci obvladajo učinkovito komunikacijo s temi orodji. Ključno
                  je, da razumejo, kako oblikovati jasne in usmerjene pozive, ki orodjem GUI
                  omogočajo, da generira ustrezne, natančne in uporabne odgovore. Strategije
                  za oblikovanje učinkovitih pozivov vključujejo jasno opredelitev ciljev, spe-
                  cifičnost pri opisovanju nalog ter zmožnost iterativnega izboljšanja pozivov
                  glede na dobljene rezultate. Učitelji morajo pridobiti veščine, ki jim omogoča-
                  jo, da GUI uporabljajo kot pedagoško orodje za spodbujanje učenja, medtem
                  ko naj se učenci učijo, kako strukturirati svoje zahteve in kritično ovrednotiti
                  prejete odgovore. Brez teh kompetenc lahko potencial GUI ostane neizkoriš-
                  čen, rezultati pa manj relevantni ali uporabni.

                  Literatura
                  Abeysekera, L., in Dawson, P. (2015). Motivation and cognitive load in the flipped class-
                      room: Definition, rationale and a call for research. Higher Education Research and
                      Development, 34(1). https://doi.org/10.1080/07294360.2014.934336
                  Abdelghani, R., Wang, Y., Yuan, X., Wang, T., Luca, P., Sauzéon, H., in Oyduer, P. (2024).
                      GPT-3-driven pedagogical agents to train children’s curious question-asking
                      skills. International Journal of Artificial Intelligence in Education, 34, 483–518.
                  Ali, S., Ravi, P., Williams, R., DiPaola, D., in Breazeal, C. (2024). Constructing dreams
                      using generative AI. Proceedings of the AAAI Conference on Artificial Intelligence,
                      38(21), 23268–23275.
                  Beauchamp, T., in Walkington, C. (2024). Mathematics teachers using generative AI to
                      personalize instruction to students’ interests.
                  Chen, W., Ma, X., Wang, X., in Cohen, W. W. (2022, 23. oktober). Program of thoughts
                      prompting: Disentangling computation from reasoning for numerical reasoning
                      tasks. ArXiv. https://doi.org/10.48550/arXiv.2211.12588
                  Daher, W., in Gierdien, F. (2024). Use of language by generative AI tools in mathemati-
                      cal problem solving: The case of ChatGPT. African Journal of Research in Mathe-
                      matics, Science and Technology Education, 28(2), 222–235.
                  Dang, H., Mecke, L., Lehmann, F., Goller, S., in Buschek, D. (2022, 3. september). How to
                      prompt? Opportunities and challenges of zero-and few-shot learning for human-AI
                      interaction in creative applications of generative models. ArXiv. https://doi.org/10
                      .48550/arXiv.2209.01390
                  Dao, X. Q., in Le, N. B. (2023, 31. oktober). Investigating the effectiveness of chatgpt in
                      mathematical reasoning and problem solving: Evidence from the vietnamese na-
                      tional high school graduation examination. ArXiv. https://doi.org/10.48550/arXiv
                      .2306.06331




                  242
   237   238   239   240   241   242   243   244   245   246   247