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Preface

This is a collection of lecture notes of the PhD Summer School in Discrete Mathemat-
ics, held from June 16 to June 21, 2013, by tradition at Rogla, Slovenia. The organization
of this summer school came as a combined effort the Faculty of Mathematics, Natural
Sciences and Information Technologies and the Andrej Marušič Institute at the Univer-
sity of Primorska, and the Centre for Discrete Mathematics at the Faculty of Education at
the University of Ljubljana.

The Scientific Committee of the meeting consisted of Klavdija Kutnar, Aleksander
Malnič, Dragan Marušič, Štefko Miklavič and Primož Šparl. The Organizing Committee
of the meeting consisted of Ademir Hujdurović, Boštjan Frelih and Boštjan Kuzman.

The aim of this Summer School was to bring together senior researchers, junior re-
searches and PhD students working in Algebraic Graph Theory. The summer school has
consisted of three minicourses given by

• Prof. Marston Conder, University of Auckland, New Zealand,

• Prof. Edward T. Dobson, Mississippi State University, USA & UP, Slovenia, and

• Prof. Tatsuro Ito, Kanazawa University, Japan.

i
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Chapter 1

Graph Symmetries

Prof. Marston Conder
University of Auckland, New Zealand

SUMMARY

• Introduction to symmetries of graphs
• Vertex-transitive and arc-transitive graphs
• s -arc-transitivity (including theorems of Tutte and Weiss)
• Proof of Tutte’s theorem on symmetric cubic graphs
• Use of amalgams and covers to analyse and construct examples
• Some recent developments

1
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1.1 Introduction to Symmetries of Graphs

Generally, an object is said to have symmetry if it can be transformed in way that leaves
it looking the same as it did originally.

Automorphisms: An automorphism (or symmetry) of a simple graph X = (V, E ) is a per-
mutation of the vertices of X which preserves the relation of adjacency; that is, a bijection
π: V → V such that {vπ, wπ} ∈ E if and only if {v, w } ∈ E .

Under composition, the automorphisms form a group, called the automorphism group
(or symmetry group) of X , and this is denoted by Aut(X ), or Aut X .

Examples

(a) Complete graphs and null graphs: Aut Kn
∼= Aut Nn

∼=Sn for all n .

(b) Simple cycles: AutCn
∼=Dn (dihedral group of order 2n) for all n ≥ 3.

(c) Simple paths: Aut Pn
∼=S2 for all n ≥ 3.

(d) Complete bipartite graphs: Aut Km ,n
∼= Sm ×Sn when m �= n , while Aut Kn ,n

∼= Sn �
S2
∼= (Sn ×Sn )�S2 (when m = n).

(e) Star graphs – see above: Aut K1,n
∼=Sn for all n > 1.

(f) Wheel graphs (cycle Cn−1 plus nth vertex joined to all): Aut Wn
∼=Dn−1 for all n ≥ 5.

(g) Petersen graph: Aut P ∼=S5 .

Exercise 1: How many automorphisms has the underlying graph (1-skeleton) of each of
the five Platonic solids: the regular tetrahedron, cube, octahedron, dodecahedron and
icosahedron?

Exercise 2: Find a simple graph on 6 vertices that has exactly one automorphism.

Exercise 3: Find a simple graph that has exactly three automorphisms. What is the small-
est such graph?

Exercise 4: For large n , do ‘most’ graphs of order n have a large automorphism group?
or just the identity automorphism?

One amazing fact about graphs and groups is Frucht’s theorem: in 1939, Robert(o) Frucht
proved that given any finite group G , there exist infinitely many connected graphs X such
that Aut X is isomorphic to G . And then later, in 1949, he proved that X may be chosen
to be 3-valent. There are several variants and generalisations of this, such as regular rep-
resentations for graphs and digraphs (GRRs and DRRs).

The simple graphs of order n with the largest number of automorphisms are the null
graph Nn and the complete graph Kn , each with automorphism group Sn (the symmet-
ric group on n symbols). For non-null, incomplete graphs of bounded valency (vertex
degree), the situation is more interesting.

In this course of lectures, we will devote quote a lot of attention to the case of regular
graphs of valency 3, which are often called cubic graphs.

Exercise 5: For each n ∈ {4, 6, 8, 10, 12, 14, 16}, which 3-valent connected graph on n ver-
tices has the largest number of automorphisms?

For fixed valency, some of the graphs with the largest number of automorphisms do not
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look particularly nice, or do not have other good properties (e.g. strength/stability, or
suitability for broadcast networks). The ‘best’ graphs possess special kinds of symmetry.

Transitivity: A graph X = (V, E ) is said to be

• vertex-transitive if Aut X has a single orbit on the vertex-set V ;

• edge-transitive if Aut X has a single orbit on the edge-set E ;

• arc-transitive (or symmetric) if Aut X has a single orbit on the arc-set (that is, the
set A = {(v, w ) | {v, w } ∈ E } of all ordered pairs of adjacent vertices);

• distance-transitive if Aut X has a single orbit on each of the sets {(v, w ) | d (v, w ) =
k } for k = 0, 1, 2, . . . ;

• semi-symmetric if X is edge-transitive but not vertex-transitive;

• half-arc-transitive if X is vertex-transitive and edge-transitive but not arc-transitive.

Examples

(a) Complete graphs: Kn is vertex-transitive, edge-transitive, arc-transitive and distance-
transitive.

(b) Simple cycles: Cn is vertex-transitive, edge-transitive, arc-transitive and distance-
transitive.

(c) Complete bipartite graphs: Km ,n is edge-transitive, but is vertex-transitive (and arc-
transitive and distance-transitive) only when m = n .

(d) Wheel graphs: Wn is neither vertex-transitive nor edge-transitive (for n ≥ 5).

(e) The Petersen graph is vertex-transitive, edge-transitive, arc-transitive and distance-
transitive.

Note that every vertex-transitive graph is regular (in the sense of having all vertices of
the same degree/valency), since for any two vertices v and w , there is an automorphism
θ taking v to w , and then θ takes the edges incident with v to the edges incident with w .

On the other hand, not every edge-transitive graph is regular: counter-examples include
all Km ,n for m �= n . But there exist graphs that are edge-transitive and regular but not
vertex-transitive. One example is the smallest semi-symmetric cubic graph, called the
Gray graph (discovered by Gray and re-discovered later by Bouwer), on 54 vertices. The
smallest semi-symmetric regular graph is the Folkman graph, which is 4-valent on 20
vertices.

Also note that every arc-transitive connected graph without isolated vertices is both vertex-
transitive and edge-transitive, but the converse does not hold. Counter-examples are
half-arc-transitive. The smallest half-arc-transitive graph is the Holt graph, which is a
4-valent graph on 27 vertices. There are infinitely many larger examples.

Exercise 6: Let X be a k -valent graph, where k is odd (say k = 3). Show that if X is
both vertex-transitive and edge-transitive, then also X is arc-transitive. [Harder ques-
tion: does the same thing always happen when k is even?]

Exercise 7: Prove that every semi-symmetric graph is bipartite.

Exercise 8: Every distance-transitive graph is arc-transitive. Can you find an arc-transitive
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graph that is not distance-transitive?

s-arcs: An s -arc in a graph X = (V, E ) is a sequence (v0, v1, . . . , vs ) of vertices of X in which
any two consecutive vertices are adjacent and any three consecutive vertices are distinct,
that is, {vi−1, vi } ∈ E for 1≤ i ≤ s and vi−1 �= vi+1 for 1≤ i < s . The graph X = (V, E ) is
called s -arc-transitive if Aut X is transitive on the set of all s -arcs in X .

Examples

(a) Simple cycles: Cn is s -arc-transitive for all s ≥ 0, whenever n ≥ 3.

(b) Complete graphs: Kn is 2-arc-transitive, but not 3-arc-transitive, for all n ≥ 3.

(c) The complete bipartite graph Kn ,n is 3-arc- but not 4-arc-transitive, for all n ≥ 2.

(d) The Petersen graph is 3-arc-transitive, but not 4-arc-transitive.

(e) The Heawood graph (the incidence graph of the projective plane of order 2) is 4-arc-
transitive, but not 5-arc-transitive.

Exercise 9: For each of the five Platonic solids, what is the largest value of s such that the
underlying graph (1-skeleton) is s -arc-transitive?

Exercise 10: Let X be an s -arc-transitive d -valent connected simple graph. Find a lower
bound on the order of the stabiliser in Aut X of a vertex v ∈V (X ), in terms of s and d .

Sharp transitivity (‘regularity’): A graph X = (V, E ) is said to be

• vertex-regular if the action of Aut X on the vertex-set V is regular (that is, for every
ordered pair (v, w ) of vertices, there is a unique automorphism taking v to w );

• edge-regular if the action of Aut X on the edge-set E is regular;

• arc-regular if the action of Aut X on the arc-set A is regular;

• s -arc-regular if the action of Aut X on the set of s -arcs of X is regular.

The same terminology applies to actions of a subgroup of Aut X on X . For example, Cay-
ley graphs (which will be encountered soon) are precisely the graphs that admit a vertex-
regular group of automorphisms ... and possibly other automorphisms as well.

Important note: The term ‘distance regular’ means something quite different – a graph
X is called distance regular if for all j and k , it has the property that for any two ver-
tices v and w at distance j from each other, the number of vertices adjacent to w and at
distance k from v is a constant (depending only on j and k , and not on v and w ).

1.2 Vertex-transitive and Arc-transitive Graphs

Let X be a vertex-transitive graph, with automorphism group G , and let H be the sta-
biliser of any vertex v , that is, the subgroup H = Gv = {g ∈ G | v g = v }. Let us also
assume that X is not null, and hence that every vertex of X has the same positive valency.

Since G is transitive on V = V (X ), we may label the vertices with the right cosets of H
in G such that each automorphism g ∈ G takes the vertex labelled H to the vertex la-
belled H g — that is, the action of G on V (X ) is given by right multiplication on the coset
space (G : H ) = {H g : g ∈G }.
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Next, define D = {g ∈G | v g is adjacent to v }= {g ∈G | {v, v g } ∈ E (X )}. Then:

Lemma 2.1:

(a) D is a union of double cosets Ha H of H in G

(b) D is closed under taking inverses

(c) v x is adjacent to v y in X if and only if x y −1 ∈D

(d) The valency of X is the number of right cosets H g contained in D

(e) X is connected if and only if D generates G .

PROOF.

(a) If a ∈ D then for all h, h ′ ∈ H we have v ha h ′ = v a h ′ = (v a )h ′ , which is the image
of a neighbour of v under an automorphism fixing v , and hence a neighbour of v , so
ha h ′ ∈ D. Thus Ha H ⊆ D whenever a ∈ D, and so D is the union of all such double
cosets of H .

(b) If a ∈D then {v a , v } ∈ E (X ), and hence {v, v a−1}= {v a , v }a−1 ∈ E (X ), so a−1 ∈D.

(c) {v y , v x } ∈ E (X ) ⇔ {v, v x y −1}y ∈ E (X ) ⇔ {v, v x y −1} ∈ E (X ) ⇔ x y −1 ∈D.

(d) By vertex-transitivity, the valency of X is the number of neighbours of v . These neigh-
bours are all of the form v a for a ∈ D, and if v a = v a ′ for a , a ′ ∈ D then v a ′a−1 = v so
a ′a−1 ∈GV = H , or equivalently, a ′ ∈ Ha , and conversely, if a ′ = ha where h ∈ H , then
v a ′ = v ha = v a . Hence this valency equals the number of right cosets of H contained in
D.

(e) Neighbours of v are of the form v a where a ∈D, and their neighbours are of the form
v a ′a where a , a ′ ∈D. By induction, vertices at distance at most k from v are of the form
v a k a k−1...a 2a 1 where a i ∈D for 1≤ i ≤ k . It follows that X is connected if and only if every
vertex can be written in this form (for some k ), or equivalently, if and only if every ele-
ment of G can be written as a product of elements of D. �

Lemma 2.2: X is arc-transitive if and only if the stabiliser H of a vertex v of X is transitive
on the neighbours of v .

PROOF. If X is arc-transitive, then for any two neighbours w and w ′ of v , there exists an
automorphism g ∈ G taking (v, w ) to (v, w ′). Any such g lies in Gv , and takes w to w ′,
and it follows that Gv is transitive on the set X (v ) of all neighbours of v . Conversely, sup-
pose that H =Gv is transitive on X (v ). Then for any arcs (v, w ) and (v ′, w ′), some g ∈G
takes v to v ′, and if the pre-image of w ′ under g is w ′′, then also some h ∈Gv takes w to
w ′′. From these it follows that (v, w )h g = (v, w ′′)g = (v ′, w ′). Thus X is arc-transitive. �

Lemma 2.3: X is arc-transitive if and only if D = Ha H for some a ∈G \H, indeed if and
only if D =Ha H for some a ∈G such that a �∈H but a 2 ∈H.

PROOF. By Lemma 2.1, we know that X is arc-transitive if and only if H =Gv is transitive
on the neighbours of v , which occurs if and only if every neighbour of v is of the form
w h for some w ∈ X (v ) and some h ∈Gv = H . By taking v a = w , we find the equivalent
condition that D =Ha H for some a ∈G \H .

For the second part, note that a−1 ∈ D = Ha H , so a−1 = ha h ′ for some h, h ′ ∈ H . But
then a ha = (h ′)−1, so (a h)2 = (h ′)−1h ∈H , and also H (a h)H =Ha hH =Ha H =D, so we
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can replace a by a h and then assume that a 2 ∈H (and still a �∈H ). �

Constructions: The observations in the preceding lemmas can be turned around to pro-
duce constructions for vertex-transitive and arc-transitive graphs, as follows.

Let G be any group, H any subgroup of G , and D any union of double cosets of G such
that H ∩D = , and D is closed under taking inverses. [Note: there is also a construction
for vertex-transitive digraphs that does not assume D is inverse-closed.]

Now define a graph X = X (G , H , D) by taking V = V (X ) to be the right coset space (G :
H ) = {H g : g ∈G }, and E = E (X ) to be the set of all pairs of the form {Hx , Ha x } where
a ∈D and x ∈G . [This construction is due to Sabidussi (1964)]

The adjacency relation is symmetric, since Hx =Ha (a−1x ), and so this is an undirected
simple graph. Also right multiplication gives an action of G on X , with g ∈ G taking a
vertex Hx to the vertex Hx g , and an edge {Hx , Ha x } to the edge {Hx g , Ha x g }. This
action is transitive on vertices, since g takes H to H g for any g ∈G . The stabiliser of the
vertex H is {g ∈G |H g =H}, which is the subgroup H itself (since H g =H if and only if
g ∈H ). Valency and connectedness are as in Lemma 2.1.

Note, however, that the action of G on X (G , H , D) need not be faithful: the kernel K of
this action is the core of H (the intersection of all conjugates g −1H g of H ) in G . Similarly,
the group G /K induced on X (G , H , D) need not be the full automorphism group Aut X ; it
is often possible that the graph admits additional automorphisms.

Cayley graphs: Given a group G and a set D of elements of G , the Cayley graph Cay(G , D)
is the graph with vertex-set G , and edge set {{x , a x } : x ∈ G , a ∈ D}. Note that this is a
special case of the above, with H = {1}.
In particular, Cay(G , D) is vertex-transitive, and the group G acts faithfully and regularly
on the vertex-set, but is not necessarily the full automorphism group. For example, a cir-
culant (which is a Cayley graph for a cyclic group) can often have more than just simple
rotations. Similarly, the n-dimensional hypercube Qn is the Cayley graph Cay(�n

2 , B )
where B is the standard basis (of elementary vectors) for �n

2 , but AutQn
∼= �2 � Sn

∼=
�n

2 �Sn .

1.3 s -arc-transitivity (and Theorems of Tutte and Weiss)

As defined earlier, an s -arc in a graph X is a sequence (v0, v1, . . . , vs ) of s + 1 vertices of
X in which any 2 consecutive vertices are adjacent and any 3 consecutive vertices are
distinct. The graph X is called s -arc-transitive if Aut X is transitive on the s -arcs in X .

Lemma 3.1: Let X be a vertex-transitive graph of valency k > 2, and let G = Aut X . Then
X is 2-arc-transitive if and only if the stabiliser Gv of a vertex v is 2-transitive on the k
neighbours of v .

PROOF. If X is 2-arc-transitive, then for any two ordered pairs (u 1, w1) and (u 2, w2) of
neighbours of v , some automorphism g ∈G takes the 2-arc (u 1, v, w1) to the 2-arc

(u 2, v, w2),
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in which case g fixes v and g takes (u 1, w1) to (u 2, w2); hence Gv is 2-transitive on the
neighbourhood X (v ). Conversely, suppose Gv is 2-transitive on X (v ), and let (u , v, w )
and (u ′, v ′, w ′) be any two 2-arcs in X . Then by vertex-transitivity, some g ∈ G takes
v to v ′, and then if g takes u ′ to u ′′ and w ′ to w ′′, say, then some h ∈ Gv takes (u , v )
to (u ′′, v ′′), in which case (u , v, w )h g −1 = (u ′′, v, w ′′)g −1 = (u ′, v ′, w ′); hence X is 2-arc-
transitive. �

Exercise 11: For a vertex-transitive graph X of valency 3, what are the possibilities for
the permutation group induced on X (v ) by the stabiliser Gv in G = Aut X of a vertex v ?
Which of these correspond to arc-transitive actions?

Exercise 12: For an arc-transitive graph X of valency 4, what are the possibilities for the
permutation group induced on X (v ) by the stabiliser Gv in G = Aut X of a vertex v ?

Lemma 3.2: Let X be a vertex-transitive graph of valency k > 2, and let G = Aut X . Then X
is (s +1)-arc-transitive if and only if X is s -arc-transitive and the stabiliser Gσ of an s -arc
σ= (v0, v1, . . . , vs ) is transitive on X (vs )\{vs−1} (the set of k−1 neighbours of vs other than
vs−1).

PROOF. If X is (s +1)-arc-transitive, then for any s -arc σ= (v0, v1, . . . , vs ) and any vertices
w and w ′ in X (vs )\{vs−1}, some automorphism g ∈G takes the (s+1)-arc (v0, v1, . . . , vs , w )
to the (s + 1)-arc (v0, v1, . . . , vs , w ′), in which case g fixes σ, and g takes w to w ′; hence
Gσ is transitive on X (vs ) \ {vs−1}. Conversely, suppose Gσ is transitive on X (vs ) \ {vs−1},
and let (v0, v1, . . . , vs , vs+1) and (w0, w1, . . . , ws , ws+1) be any two (s +1)-arcs in X . Then by
s -arc-transitivity, some g ∈G takes (v0, v1, . . . , vs ) to (w0, w1, . . . , ws ), and then if g takes
ws+1 to w ′, say, then some h ∈Gσ takes vs+1 to w ′, in which case

(v0, v1, . . . , vs , vs+1)h g −1
= (v0, v1, . . . , vs , w ′)g −1

= (w0, w1, . . . , ws , ws+1);

hence X is (s +1)-arc-transitive. �

The simple cycle Cn (which has valency 2) is s -arc-transitive for all s ≥ 0, as is the union
of more than one copy of Cn . This case is somewhat exceptional. For k > 2, there is an
upper bound on values of s for which there exists a finite s -arc-transitive graph of va-
lency k , as shown by the theorems of Tutte and Weiss below.

The first theorem, due to W.T. Tutte, is for valency 3, and will be proved in Section 4. On
the other hand, the second theorem, due to Richard Weiss, is for arbitrary valency k ≥ 3,
but its proof is much more difficult, and is beyond the scope of this course.

Theorem 3.3 [Tutte, 1959]: Let X be a finite connected arc-transitive graph of valency 3.
Then X is s -arc-regular (and so |Aut X |= 3·2s−1 ·|V (X )|) for some s ≤ 5. Hence in particular,
there are no finite 6-arc-transitive cubic graphs.

The upper bound on s in Tutte’s theorem is sharp; in fact, it is attained by infinitely many
graphs, although these graphs are somewhat rare. The smallest example is given below.

Tutte’s 8-cage: This is the smallest 3-valent graph of girth 8, and has 30 vertices. It can be
constructed in many different ways. One way is as follows:

In the symmetric group S6, there are (62) = 15 transpositions (2-cycles), and 5 · 3 · 1 = 15
triple transpositions (sometimes called synthemes). Define a graph T by taking these 30
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permutations as the vertices, and joining each triple transposition (a ,b )(c , d )(e , f ) by an
edge to each of its three transpositions (a ,b ), (c , d ) and (d , e ).

The resulting graph T is Tutte’s 8-cage. It is 3-valent, bipartite and connected, and the
group S6 induces a group of automorphisms of T by conjugation of the elements.

Exercise 13: Write down the form of a typical 5-arc (v0, v1, . . . , v5) in Tutte’s cage T with
initial vertex v0 being a transposition (a ,b ). Use this to prove that (a) the group S6 is tran-
sitive on all such 5-arcs, and (b) T is not 6-arc-transitive.

Exercise 14: Prove that the girth (the length of the smallest cycle) of Tutte’s 8-cage is 8.

Now the group S6 is somewhat special among symmetric groups in that AutS6 is twice
as large as S6. In fact, S6 admits an outer automorphism that interchanges the 15 trans-
positions with the 15 triple transpositions, and interchanges the 40 3-cycles with the 40
double 3-cycles (a ,b , c )(d , e , f ). Any such outer automorphism reverses a 5-arc in Tutte’s
8-cage, and it follows that Tutte’s 8-cage is 5-arc-transitive.

Note that Tutte’s theorem actually puts a bound on the order of the stabiliser of a vertex
(in the automorphism group of a finite symmetric 3-valent graph). The same thing does
not hold for 4-valent symmetric graphs, as shown by the following.

Necklace/wreath graphs: Take a simple cycle Cn , where n ≥ 3, with vertices labelled
0, 1, 2, . . . , n − 1 in cyclic order, and then replace every vertex j by a pair of vertices u j

and vj , and join every such u j and every such vj by an edge to each of the four ver-
tices u j−1, vj−1, u j+1 and vj+1, with addition and subtraction of subscripts taken mod-
ulo n . The resulting 4-valent graph (called a ‘necklace’ or ‘wreath’ graph) has 2n ver-
tices, and is arc-transitive, with automorphism group isomorphic to the wreath product
S2 �Dn

∼= (S2)n �Dn . In particular, the stabiliser of any vertex has order 2n , which is un-
bounded.

Exercise 15: What is the largest value of s for which the above graph (on 2n vertices) is
s -arc-transitive?

It is also worth noting here that vertex-stabilisers are bounded for the automorphism
groups of maps. A map is an embedding of a connected graph or multigraph on a sur-
face, dividing the surface into simply-connected regions, called the faces of the map. By
definition, an automorphism of a map M preserves incidence between vertices, edges
and faces of M , and it follows that if a vertex v has degree k , then the stabiliser of v
in Aut M is a subgroup of the dihedral group Dk . The most highly symmetric maps are
called rotary, or regular.

Theorem 3.4 [Weiss, 1981]: Let X be a finite connected s -arc-transitive graph of valency
k ≥ 3. Then s ≤ 7, and if s = 7 then k = 3t +1 for some t . Hence in particular, there are no
finite 8-arc-transitive graphs of valency k whenever k > 2.

As with Tutte’s theorem, the upper bound on s in Weiss’s theorem is sharp. In fact, for ev-
ery t > 0, the incidence graph of a generalised hexagon over GF(3t ) is a 7-arc-transitive
graph of valency 3t +1.

The proof of Weiss’s theorem uses the fact that if X is s -arc-transitive for some s ≥ 2,
then X is 2-arc-transitive (by Lemma 3.2), and so the stabiliser in G = Aut X of a vertex
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v of X is 2-transitive on the neighbourhood X (v ) of v (by Lemma 3.1). It then uses the
classification of finite 2-transitive groups, obtained by Peter Cameron in 1981 using the
classification of the finite simple groups (CFSG).

Finally in this section, we give something that is useful in proving Tutte’s theorem (and
in other contexts as well):

Lemma 3.5 (The ‘even distance’ lemma): For any connected arc-transitive graph X , let
G+ = 〈Gv ,Gw 〉 be the subgroup of G = Aut X generated by the stabilisers Gv and Gw of any
two adjacent vertices v and w . Then

(a) the orbit of v under G+ contains all vertices at even distance from v ,

(b) G+ contains the stabiliser of every vertex of X ,

(c) G+ has index 1 or 2 in G = Aut X , and

(d) |G : G+|= 2 if and only if X is bipartite.

PROOF. LetΩ and� be the orbits of v and w under G+. Then� contains w Gv , so contains
all neighbours of v . Similarly, Ω contains all neighbours of w , so contains all vertices
at distance 2 from v . Also G+ contains their stabilisers; for example, if h ∈ G+ takes
v to z , then G+ contains h−1Gv h = Gz . Parts (a) and (b) now follow from these ob-
servations, by induction. By the same token, the orbit � = w G+ contains all vertices at
even distance from w . Hence in particular, every vertex of X lies in Ω ∪�. Also by the
orbit-stabiliser theorem, |Gv ||Ω|= |G+|= |Gw ||�|, and then since |Gv |= |Gw |, this implies
|Ω| = |�|, and it follows that |Ω| = |�| = |V (X )| or |V (X )|/2. In the latter case, Ω and � are
disjoint, which happens if and only if X is bipartite (with parts Ω and �), and then also
|G | = |Gv ||V (X )| = 2|Gv ||Ω| = 2|G+|, so G+ has index 2 in G . On the other hand, in the
former case, Ω = � = V (X ) and |G | = |Gv ||V (X )| = |Gv ||Ω| = |G+|, and then G+ =G . This
proves parts (c) and (d). �

1.4 Proof of Tutte’s Theorem on Symmetric Cubic Graphs

Theorem [Tutte, 1959]: Let X be a finite connected arc-transitive graph of valency 3. Then
X is s -arc-regular (and so |Aut X | = 3 · 2s−1 · |V (X )|) for some s ≤ 5. Hence in particular,
there are no finite 6-arc-transitive cubic graphs.

We will prove this in several stages, using only elementary theory of groups and graphs.

First, we let s be the largest positive integer t for which the graph X is t -arc-transitive,
and let G = Aut X .

Then we let σ = (v0, v1, . . . , vs ) be any s -arc in X , and consider the stabilisers in G of the
0-arc (v0), the 1-arc (v0, v1), the 2-arc (v0, v1, v2), and so on.

We use properties of these to show that X is s -arc-regular, and then by considering the
smallest k for which the stabiliser in G of the k -arc (v0, v1, . . . , vk ) is abelian, we prove
that s ≤ 5.

Lemma 4.1: X is s -arc-regular.

PROOF. We have assumed X is s -arc-transitive, so all we have to do is show that the sta-
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biliser of an s -arc is trivial. So assume the contrary. Then every s -arc σ is preserved by
some non-trivial automorphism f , and by conjugating by a ‘shunt’ if necessary, we can
choose σ = (v0, v1, . . . , vs ) such that f moves one of the neighbours of vs , say w . Then
since f fixes vs and its neighbour vs−1, it must interchange w with the third neighbour
w ′ of vs . It follows that the stabiliser of the s -arcσ= (v0, v1, . . . , vs ) is transitive on the set
of two (s + 1)-arcs extending σ, namely (v0, v1, . . . , vs , w ) and (v0, v1, . . . , vs , w ′). Hence X
is (s +1)-arc-transitive, contradiction. �

Stabilisers

Letσ= (v0, v1, . . . , vs ) be any s -arc of X , and let G = Aut X , and now define

Hs = G (0) = G (v0)

Hs−1 = G (1) = G (v0,v1)

: : :

Hs−k = G (k ) = G (v0,v1,...,vk )

: : :

H0 = G (s ) = G (v0,v1,...,vs−1,vs ) = {1}.
Then working backwards, we find that |Hj |= |G (s−j )|= 2j for 0≤ j < s , while also |Hs |=
|G (0)|= 3 ·2s−1 and |G |= 3 ·2s−1 · |V (X )|.
Particular automorphisms

As before, let w and w ′ be the other two neighbours of vs . Also let h and h ′ be the two au-
tomorphisms that take σ = (v0, v1, . . . , vs−1, vs ) to (v1, v2, . . . , vs , w ) and (v1, v2, . . . , vs , w ′)
respectively, and define x0 = h ′h−1 and x j = h j x0h−j for 1≤ j ≤ s . Note that x0 = h ′h−1

preserves (v0, v1, . . . , vs−1) and is non-trivial, so x0 must swap vs with the third neighbour
of vs−1; hence x0 has order 2. It follows that every x j has order 2.

Moreover, x j−1 preserves (v0, v1, . . . , vs−j ) and swaps vs−j+1 with the third neighbour of
vs−j , for 1 ≤ j < s . Hence in particular, x j−1 ∈ Hj \Hj−1. Then since |Hj | = 2|Hj−1|, we
find that Hj is generated by {x0,x1, . . . ,x j−1} for 1 ≤ j < s . Similarly, xs−1 fixes v0 but
moves v1, so xs−1 ∈ Hs \Hs−1. Then since |Hs : Hs−1| = 3 (a prime), Hs−1 is a maximal
subgroup of Hs , so Hs is generated by {x0,x1, . . . ,xs−1}.
Next, consider the subgroup G ∗ generated by {x0,x1, . . . ,xs }. This contains Hs = Gv0

and 〈x1, .. ,xs−1,xs 〉 = Gu where u h = v0, and so by the ‘even distance’ lemma, G ∗ is
a subgroup of index 1 or 2 in G (the one we called G+ earlier). Hence in particular,
|G ∗|= 3 ·2s−1 · |V (X )| or half of that. Finally, since h moves v0 to v1 (which is at distance 1
from v0), we find that G = 〈h,G ∗〉= 〈h,x0,x1, . . . ,xs 〉= 〈h,x0〉.
We can summarise this in the following lemma.

Lemma 4.2:

(a) Hj = 〈x0,x1, . . . ,x j−1〉 for 1≤ j ≤ s ,

(b) G+ = 〈x0,x1, . . . ,xs 〉, and

(c) G = 〈h,x0,x1, . . . ,xs 〉= 〈h,x0〉.
Note that H1 = 〈x0〉 and H2 = 〈x0,x1〉 are abelian, with orders 2 and 4 respectively.
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Define λ to be the largest value of j for which Hj is abelian. We will show that 2
3 (s −1)≤

λ< 1
2 (s +2)whenever s ≥ 4, and hence that s ≤ 5 or s = 7, and then we will eliminate the

possibility that s = 7.

Lemma 4.3: If s ≥ 4, then 2≤λ< 1
2 (s +2).

PROOF. Assume the contrary. We know that λ≥ 2, so the assumption implies 2λ≥ s + 2,
and hence λ− 1≥ s −λ+ 1. Now Hλ = 〈x0,x1, . . . ,xλ−1〉 is abelian, and therefore so is its
conjugate hs−λ+1Hλh−(s−λ+1) = 〈xs−λ+1,xs−λ+2, . . . ,xs 〉. Then since λ−1≥ s −λ+1, both
of these contain xλ−1, and also together they generate 〈x0,x1, . . . ,xs 〉 = G+. It follows
that xλ−1 commutes with every element of G+. In particular, xλ−1 commutes with h2

(which lies in G+ since |G : G+| ≤ 2). But that implies xλ−1 = h2xλ−1h−2 = xλ+1, and then
conjugating by hλ−1 gives x0 = x2, contradiction. �

Lemma 4.4: The centre of Hj = 〈x0,x1, . . . ,x j−1〉 is generated by {x j−λ, . . . ,xλ−1}, for λ ≤
j < 2λ.

PROOF. Every element x of Hj can be written uniquely in the form x = xi 1 xi 2 . . .xi r with
0≤ i 1 < i 2 < · · ·< i r ≤ j − 1. Now [xi 1 ,xi 1+λ] �= 1 since otherwise [x0,xλ] = 1 and then xλ
commutes with x0,x1, . . . ,xλ−1, so Hλ+1 = 〈x0,x1, . . . ,xλ〉 is abelian, contradiction. Thus
xi 1+λ �∈Z (Hj )when i 1+λ< j . Similarly [xi r ,xi r−λ] �= 1 when i r−λ≥ 0. Hence if x ∈Z (Hj )
then x = xi 1 xi 2 . . .xi r where i 1 ≥ j −λ and i r <λ.

Conversely, if 0 ≤ j − λ ≤ i < λ ≤ j then xi commutes with all of x0,x1, . . . ,xλ−1, be-
cause Hλ = 〈x0,x1, . . . ,xλ−1〉 is abelian, and with all of xλ, . . . ,x j−1, since hλHλh−λ =
〈xλ, . . . ,x2λ−1〉 is abelian (and λ≤ j < 2λ). Thus every such element xi 1 xi 2 . . .xi r is central
in Hj . �

Lemma 4.5: The derived subgroup of Hj+1 = 〈x0,x1, . . . ,x j 〉 is a subgroup of 〈x1, . . . ,x j−1〉,
for 1≤ j ≤ s −2.

PROOF. Each of 〈x1, . . . ,x j 〉 and 〈x0, . . . ,x j−1〉 has index 2 in Hj+1 = 〈x0,x1, . . . ,x j 〉, and
is therefore normal in Hj+1. Their intersection 〈x1, . . . ,x j−1〉 is a normal subgroup, of
index 4, and (so) the quotient is abelian. Thus 〈x1, . . . ,x j−1〉 contains all commutators of
elements of Hj+1, and hence contains the derived subgroup of Hj+1. �

Next, consider the element [x0,xλ] = x−1
0 x−1

λ x0xλ = (x0xλ)2. By Lemma 4.5, this lies in
〈x1, . . . ,xλ−1〉, so can be written in the form xi 1 . . .xi r with 1≤ i 1 < · · ·< i r ≤λ−1.

We will take μ= i 1 and ν = i r , and show that μ+λ≥ s −1 and 2λ−ν ≥ s −1, and hence
that 2

3 (s −1)≤λ.

Lemma 4.6: If [x0,xλ] is written as xi 1 . . .xi r with 0< i 1 < · · ·< i r <λ, then
(a) i 1+λ≥ s −1, and (b) 2λ− i r ≥ s −1.

PROOF. Take μ= i 1 and ν = i r , so that 0<μ≤ ν <λ.

For (a), suppose that μ+λ≤ s −2. Then Lemma 4.5 implies that [x0,xμ+λ] lies in

〈x1, . . . ,xμ+λ−1〉,
the centre of which is 〈xμ, . . . ,xλ〉. The latter contains xλ and xμ . . .xν = [x0,xλ], so both
of these commute with [x0,xμ+λ]. This gives
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[x0,xλ]xμ+λ = [x
xμ+λ
0 ,x

xμ+λ
λ ] = [x

xμ+λ
0 ,xλ]

= [x0[x0,xμ+λ],xλ] = [x0,xμ+λ]−1x−1
0 x−1

λ x0[x0,xμ+λ]xλ

= [x0,xμ+λ]−1[x0,xλ]x−1
λ [x0,xμ+λ]xλ

= [x0,xμ+λ]−1[x0,xλ][x0,xμ+λ] = [x0,xλ],

and therefore xμ . . .xν = [x0,xλ] commutes with xμ+λ, contradiction.

Similarly, if 2λ − ν ≤ s − 2 then [x0,x2λ−ν ] ∈ 〈x1, . . . ,x2λ−ν−1〉, the centre of which is
〈xλ−ν , . . . ,xλ〉, so [x0,x2λ−ν ] commutes with xλ−ν and xμ+λ−ν . . .xλ = hλ−ν (xμ . . .xν )hν−λ =
hλ−ν [x0,xλ]hν−λ = [xλ−ν ,x2λ−ν ]. This gives

[xλ−ν ,x2λ−ν ]x0 = [x x0
λ−ν ,x x0

2λ−ν ] = [xλ−ν ,x x0
2λ−ν ]

= [xλ−ν , [x0,x2λ−ν ]x2λ−ν ]
= xλ−ν x2λ−ν [x0,x2λ−ν ]−1xλ−ν [x0,x2λ−ν ]x2λ−ν
= xλ−ν x2λ−ν xλ−ν x2λ−ν = [xλ−ν ,x2λ−ν ],

so xμ+λ−ν . . .xλ = [xλ−ν ,x2λ−ν ] commutes with xμ+λ, contradiction. This proves part (b).
�

Lemma 4.7: If s ≥ 4, then λ≥ 2
3 (s −1).

PROOF. Lemma 4.6 gives s − 1−λ ≤ μ ≤ ν ≤ 2λ− s + 1, and then forgetting μ and ν
and rearranging gives 2s −2≤ 3λ. �

Lemma 4.8: If s ≥ 4, then s = 4, 5 or 7.

PROOF. By Lemmas 3 and 6 we have 2
3 (s −1)≤ λ< 1

2 (s +2). Forgetting λ and rearranging
gives 4s − 4 < 3s + 6, so s < 10, but on the other hand, for s ∈ {6, 8, 9} there is no integer
solution for λ, so s = 4, 5 or 7. �

Lemma 4.9: s �= 7.

PROOF. Assume that s = 7. Then λ = 4, and 2 ≤ μ ≤ ν ≤ 2 so μ = ν = 2, which gives
[x0,x4] = x2. Next we consider [x0,x5]. By Lemma 4.5, this lies in 〈x1,x2,x3,x4〉.
Suppose that (x0x5)2 = [x0,x5] lies in 〈x1,x2,x3〉. Then x5x0x5 lies in 〈x0,x1,x2,x3〉 = H4

and so fixes vertex v3 of our original 7-arc σ = (v0, v1, . . . , v7), and hence x0 fixes v x5
3 .

Observe that x5 fixes v0 and v1 but not v2 or v3, and so v x5
2 is the third neighbour of v1,

different from v0 and v2 but then also fixed by x0. It follows that x0 preserves the 7-arc
(v x5

3 , v x5
2 , v1, v2, v3, v4, v5, v6), contradiction.

Thus [x0,x5] = y x4 for some y ∈ 〈x1,x2,x3〉. In particular, y commutes with x0 and x4

(since λ= 4), and also y 2 = 1 since 〈x1,x2,x3〉 is abelian. But now it follows that

x2 = [x0,x4] = (x0x4)2 = (x0y x4)2 = (x0[x0,x5])2

= (x5x0x5)2 = x5x 2
0 x5 = 1, a final contradiction. �

This completes the proof of Tutte’s theorem.
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1.5 Amalgams and Covers

Recall (from Section 3) that if X is an arc-transitive graph, with automorphism group
G , and H is the stabiliser of a vertex v , then X may be viewed as a double coset graph
X (G , H , D)where D =Ha H for some a ∈G (moving v to a neighbour), with a 2 ∈H .

Lemma 5.1: In the arc-transitive graph X (G , H , Ha H ), the stabiliser in G of the arc (H , Ha )
is the intersection H∩a−1Ha , and the stabiliser of the edge {H , Ha } is the subgroup gener-
ated by H ∩a−1Ha and a . In particular, the valency of X (G , H , Ha H ) is equal to the index
|H : H ∩a−1Ha |.
PROOF. Let v be the vertex H . Then since a 2 ∈ H , the element a interchanges v with its
neighbour w = v a , and hence reverses the arc (v, w ). Also a−1Ha is the stabiliser of the
vertex v a =w , so H ∩a−1Ha is the stabiliser of the arc (v, w ). The rest follows easily from
this (and transitivity of H on the neighbours of v ). �

Amalgams for symmetric graphs

For the next part of this section, we will abuse notation and use V , E and A respectively
for the stabilisers of the vertex v , the edge {v, w }, and the arc (v, w ), where w is the neigh-
bour of v that is interchanged with v by the arc-reversing automorphism a .

The triple (V, E , A)may be called an amalgam. Note that V ∩ E = A. Note also that if X is
connected, then G = 〈Ha H 〉= 〈H , a 〉= 〈H , H ∩a−1Ha , a 〉= 〈V, E 〉.
This amalgam specifies the kind of group action on X . For example, if X is 3-valent and
V ∼=S3

∼=D3 and E ∼= V4 (the Klein 4-group), with A = V ∩ E ∼=C2, then the action of G on
X is 2-arc-regular, with the element a being an involution (reversing the arc (v, w )).

Conversely, from any such triple (V, E , A) we can form the amalgamated free product
� = V ∗A E (of the groups V and E with their intersection A = V ∩ E as amalgamated
subgroup), which is a kind of universal group for such actions.

Specifically, G is an arc-transitive group of automorphisms of the symmetric graph X ,
acting in the way that is specified, if and only if G is a quotient of� via some homomor-
phism which preserves the amalgam (that is, preserves the orders of V , E and A). When
that happens, the homomorphism takes V , E and A (faithfully) to the stabilisers of some
vertex v , incident edge {v, w } and arc (v, w ) respectively,

This gives a way of classifying such graphs, or finding all of the examples of small order.

Exercise 16: What is the amalgam for the action of S3 �S2 on the graph K3,3? Is this the
same as the amalgam for the Petersen graph?

In 1980, Djoković and Miller determined all possible amalgams for an arc-transitive ac-
tion of a group on a 3-valent graph with finite vertex-stabiliser. There are precisely seven
such amalgams, which they called 1′, 2′, 2′′, 3′, 4′, 4′′ and 5′. In each case, the given num-
ber is the value of s for which the group acts regularly on s -arcs, and ′ indicates that the
group contains arc-reversing elements that are involutions (of order 2), while ′′ indicates
that every arc-reversing element has order greater than 2. (Note that we require a 2 ∈ H
but not necessarily a 2 = 1.) The first examples of finite 3-valent graphs with full auto-
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morphism groups of the types 2′′ and 4′′ were found by Conder and Lorimer (1989).

The universal groups for the seven Djoković-Miller amalgams are now customarily de-
noted by G1, G 1

2 , G 2
2 , G3, G 1

4 , G 2
4 and G5, with s being the subscript, and with Gs and G 1

s
corresponding to s ′, and G 2

s corresponding to s ′′.
For example, the group G1 is the modular group 〈h, a | h3 = a 2 = 1 〉, which is the free
product of V = 〈h〉 ∼=C3 and E = 〈a 〉 ∼=C2 (with A = V ∩E = {1} amalgamated). Quotients
of this group (in which the orders of V and E are preserved) are groups that act regularly
on the arcs of a connected 3-valent symmetric graph.

Similarly, G 1
2 is the extended modular group 〈h, p , a | h3 = p 2 = a 2 = (hp )2 = (a p )2 = 1 〉,

which is the amalgamated free product of V = 〈h, p 〉 ∼= S3 and E = 〈p , a 〉 ∼= V4 with amal-
gamated subgroup A = V ∩ E = 〈p 〉 ∼= C2, while on the other hand, G 2

2 is the group
〈h, p , a | h3 = p 2 = a 4 = (hp )2 = a 2p = 1 〉, which is the amalgamated free product of
V = 〈h, p 〉 ∼=S3 and E = 〈a 〉 ∼=C4 with amalgamated subgroup A = V∩E = 〈p 〉= 〈a 2〉 ∼=C2.

The group G5 has a presentation on five generators h, p ,q , r, s and a , obtainable from the
amalgam 5′, with V = 〈h, p ,q , r, s 〉 ∼=S4×C2 (of order 48), and E = 〈p ,q , r, s , a 〉 ∼=D4�V4,
and A = V ∩ E = 〈p ,q , r, s 〉 ∼= D4 ×C2 (of order 16). This was used by Conder (1988) to
prove that for all but finitely many n , both An or Sn occur as the automorphism groups
of 5-arc-transitive cubic graphs.

Relationships between these seven groups were investigated by Djoković and Miller (1980)
and Conder and Lorimer (1989), and recently by Conder and Nedela (2009) to refine the
Djoković-Miller classification of arc-transitive group actions on symmetric cubic graphs.

Exercise 17: Find an example of a symmetric cubic graph that admits actions of arc-
transitive groups of types 1′, 2′, 2′′ and 3′.
Exercise 18: Can you find an example of a symmetric cubic graph that admits an action
by an arc-transitive group of type 3′ but not one of type 1′?

Also in 1987, Richard Weiss identified the amalgams for several different kinds of s -arc-
transitive group actions on graphs of valency greater than 3.

For example, Weiss produced one that gives the universal group for 7-arc-transitive group
actions on 4-valent graphs, with V a group of order 11664 (being an extension of a group
of order 35 by GL(2, 3)), and E a group of order 5832, with A = V ∩ E having index 4 in V
and index 2 in E . This was used by Conder and Walker (1998) to prove the existence of
infinitely many 7-arc-transitive 4-valent graphs (indeed with automorphism group An or
Sn , for all but finitely many n).

Amalgams for semi-symmetric graphs

The same kind of thing happens for semi-symmetric graphs. These can be analysed in
terms of amalgams (H , K , L) consisting of the stabilisers H =Gv and K =Gw of adjacent
vertices and their intersection L = Gv ∩Gw , which is the stabiliser of the edge {v, w },
since semi-symmetric graphs are edge- but not arc-transitive.

For semi-symmetric 3-valent graphs, there are 15 different amalgams, determined by
Goldschmidt (1980). These were used by Conder, Malnič, Marušič, Pisanski and Potočnik
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to find all semi-symmetric 3-valent graphs of small order (in 2001), and led to their dis-
covery of the Ljubljana graph, which is a semi-symmetric 3-valent graph of order 112
with interesting properties.

Graph quotients and covers

If X and Y are graphs for which there exists a graph homomorphism from Y onto X , then
X is called a quotient of Y , and if the homomorphism is locally bijective — that is, faithful
on the neighbourhood of each vertex — then Y is called a cover of X .

Exercise 19: Show that K4 is a quotient of the cube graph Q3. [Hint: antipodes!]

There are various ways of constructing covers of a given connected graph X . Some in-
volve voltage graph techniques, which can be roughly described as follows:

Choose a spanning tree for X , and a permutation group P on some set Ω, and assign ele-
ments of P to the co-tree edges (the edges not included in the spanning tree), with each
such edge given a specific orientation, to make it an arc. Then take |Ω| identical copies
of X , and for each co-tree arc (v, w ), use the label π (from P) to define copies of the arc,
from the vertex v in the j th copy of X to the vertex w in the (j π)th copy of X , for all j ∈Ω.
This gives a cover of X , with voltage group P .

Exercise 20: Construct Q3 as a cover of K4, using P =S2.

In the 1970s, John Conway used a covering technique to produce infinitely covers of
Tutte’s 8-cage, and hence prove (for the first time) that there are infinitely many finite
5-arc-transitive cubic graphs. [This is described in Bigg’s book Algebraic Graph Theory.]

Another way to construct covers of a symmetric graph X is to use the universal group
� = V ∗A E associated with the action of some arc-transitive group G of automorphisms
of X . The group G is a quotient � /K for some normal subgroup K of � , and then for
any normal subgroup L of� contained in K , the quotient� /L is an arc-transitive group
of automorphisms of some cover of X .

1.6 Some Recent Developments

This final section describes a number of recent developments on topics mentioned ear-
lier.

Foster census:

In the 1930s, Ronald M. Foster (a mathematician/engineer working for Bell Labs) began
compiling a list of all known connected symmetric 3-valent graphs of order up to 512.
This ‘census’ was published in 1988, and was remarkably good, with only a few gaps.

The Foster census was extended by Conder and Dobcsányi (2002), with the help of some
computational group theory and distributed computing. The extended census filled the
gaps in Foster’s list, and took it further, up to order 768. This also produced the small-
est symmetric cubic graph of Djoković-Miller type 2′′, on 448 vertices. (The previously
smallest known example had order 6652800.) In 2011/12, with the help of a new algo-
rithm for finding finite quotients of finitely-presented groups, Conder extended this cen-
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sus, to find all connected symmetric 3-valent graphs of order up to 10000.

Other such lists:

Primož Potočnik, Pablo Spiga and Gabriel Verret have developed new methods for find-
ing all vertex-transitive cubic graphs of small orders, and in 2012 used these to find all
such graphs of order up to 1280, as well as all symmetric 4-valent graphs of order up to
640 (using a relationship between these kinds of graphs).

In 2013, Conder and Potočnik extended the list of all semi-symmetric 3-valent graphs, up
to order 10000 as well.

There are similar lists of arc transitive graphs embedded on surfaces as regular maps,
with large automorphism group. See www.math.auckland.ac.nz/∼conder for some
of these.

Related open problems (concerning pathological examples):

(a) What is the smallest symmetric cubic graph of Djoković-Miller type 4′′?
Such a graph must be 4-arc-regular, but have no arc-reversing automorphisms of order
2. The smallest known example has order 5314410, with automorphism group an exten-
sion of (C3)11 by PGL(2, 9). There is another nice (but larger) example of order 20401920,
with automorphism group the simple Mathieu group M 24.

(b) What is the smallest 5-arc-transitive cubic graph X with the property that its automor-
phism group is the only arc-transitive group of automorphisms of X ?

The smallest known example has order 2497430038118400, with automorphism group
M 24 �S2. Examples are known with an alternating group An as automorphism group, but
the smallest such n is 26.

(c) What is the smallest half-arc-transitive graph X for which the stabiliser of a vertex in
Aut X is neither abelian nor dihedral?

Conder and Potočnik found one recently of order 90 ·310, with vertex-stabiliser D4×C2.

Covers:

Cheryl Praeger and some of her colleagues have done a lot of work on decomposing and
constructing symmetric graphs via their quotients, and are using this to form a (loose)
classification of all 2-arc-transitive finite graphs.

Group-theoretic covering methods have been applied to find all symmetric (or semisym-
metric) regular covers of various small graphs, with abelian covering groups. For exam-
ple:

• Cyclic symmetric coverings of Q3 [Feng & Wang (2003)],

• Cyclic symmetric coverings of K3,3 [Feng & Kwak (2004)],

• Elementary abelian symmetric covers of the Petersen graph [Malnič & Potočnik
(2006)],

• Semisymmetric elementary abelian covers of the Möbius-Kantor graph [Malnič,
Marušič, Miklavič & Potočnik (2007)],

• Elementary abelian symmetric covers of the Pappus graph [Oh (2009)],

• Elementary abelian symmetric covers of the octahedral graph [Kwak & Oh (2009)],
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• Elementary abelian symmetric covers of K5 [Kuzman (2010)].

In joint work with PhD student Jicheng Ma (2009–2012) we now have all symmetric abelian
regular covers of K4, K3,3, Q3, the Petersen graph and the Heawood graph.

Degree-diameter problem:

The degree-diameter problem involves finding the largest (regular) connected graph with
given vertex-degree d and diameter D; for example, the Petersen graph is the largest for
(d , D) = (3, 2). In his PhD thesis project (2005-2008), Eyal Loz used voltage graphs to find
covers of various small vertex- and/or arc-transitive graphs that are now the best known
graphs in over half of the cases in the degree-diameter table. For more information, see:
moorebound.indstate.edu/wiki/The_Degree_Diameter_Problem_for_General_Graphs.

Locally arc-transitive graphs:

A semi-symmetric graph is not vertex-transitive, but nevertheless can have a high degree
of symmetry (subject to that constraint). A graph X is locally s -arc-transitive if the sta-
biliser in Aut X of a vertex v is transitive on all s -arcs in X starting at v .

An unpublished theorem of Stellmacher (1996) states that If X is a finite locally s -arc-
transitive graph, then s ≤ 9. Until recently, the only known examples for s = 9 came from
classical generalised octagons and their covers. Such graphs are semi-symmetric (and
hence bipartite) but not regular: vertices in different parts can have different valencies.

The smallest example for s = 9 has order 4680, with vertices of valency 3 in one part
and 5 in the other. Its automorphism group is 2F4(2) (a Ree simple group), with vertex-
stabilisers H and K of orders 12288 and 20480, and arc/edge-stabiliser L =H∩K of order
4096. In response to a comment by Michael Giudici at Rogla in 2011, Conder proved that
the amalgamated free product H ∗L K has all but finitely many alternating groups An as
quotients. Hence there exist infinitely locally 9-arc-transitive bipartite graphs with ver-
tices of valency 3 in one part and 5 in the other.
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Chapter 2

Imprimitive Permutation Groups

Prof. Edward T. Dobson
Mississippi State University, USA and University of Primorska, Slovenia

SUMMARY

With the Classification of the Finite Simple Groups and the O’Nan-Scott Theorem, much
detailed information concerning primitive permutation groups has now been obtained.
While primitive permutation groups are interesting in their own right, primitive permu-
tation groups are actually quite rare, with a “typical" transitive permutation group being
imprimitive. However, primitive permutation groups are the building blocks of imprim-
itive permutation groups, and so are the building blocks of all transitive groups. We will
discuss techniques to analyze imprimitive permutation groups (sometimes using the re-
cently obtained detailed knowledge of primitive permutation groups), with an emphasis
on determining information about the automorphism group of a vertex-transitive di-
graph.
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2.1 Introduction

The O’Nan-Scott Theorem together with the Classification of the Finite Simple Groups is
a powerful tool that give the structure of all primitive permutation groups, as well as their
actions. This has allowed for the solution to many classical problems, and has opened
the door to a deeper understanding of imprimitive permutation groups, as primitive per-
mutation groups are the building blocks of imprimitive permutation groups. We first give
a more or less standard introduction to imprimitive groups, and then move to less well-
known techniques, with an emphasis on studying automorphism groups of graphs.

A few words about these lecture notes. The lecture notes are an “expanded" version of
the lecture - some of the lecture will be basically exactly these lecture notes, but in many
cases the proofs of some background results (typically those that in my view are those
whose proofs are primarily checking certain computations) are given in these lecture
notes but will not be given in the lectures due to time constraints. Also, the material is
organized into sections by topic, not by lecture.

2.2 Basic Results on Imprimitive Groups

Definition 2.2.1 Let G be a transitive group acting on X . A subset B ⊆ X is a block of
G if whenever g ∈ G , then g (B )∩ B =  or B . If B = {x } for some x ∈ X or B = X , then
B is a trivial block. Any other block is nontrivial. If G has a nontrivial block then it is
imprimitive. If G is not imprimitive, we say that G is primitive. Note that if B is a block
of G , then g (B ) is also a block of B for every g ∈ G , and is called a conjugate block of
B . The set of all blocks conjugate to B , denoted� , is a partition of X , and� is called a
complete block system of G .

There does not seem to be a standard term for what is called here a complete block
system of G . Other authors use a system of imprimitivity or a G -invariant partition for
this term.

Theorem 2.2.2 Let � be a complete block system of G . Then every block in � has the
same cardinality, say k . Further, if m is the number of blocks in� then m k is the degree
of G .

Theorem 2.2.3 Let G be a transitive group acting on X . If N �G , then the orbits of N form
a complete block system of G .

PROOF. Let x ∈ X and B the orbit of N that contains x , so that B = {h(x ) : h ∈ N }. Let
g ∈G , and for h ∈N , denote by h ′ the element of N such that g h = h ′g . Note h ′ always
exists as N �G , and that {h ′ : h ∈N }=N as conjugation by g induces an automorphism
of N . Then g (B ) = {g h(x ) : h ∈N }= {h ′g (x ) : h ∈N }= {h(g (x )) : h ∈N }. Hence g (B ) is
the orbit of N that contains g (x ), and as the orbits of N form a partition of X , g (B )∩B = 
or B . Thus B is a block, and as every conjugate block g (B ) of B is an orbit of N , the orbits
of N do indeed form a complete block system of G . �
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Example 2.2.4 Defineρ,τ :�2×�5 �→�2×�5 byρ(i , j ) = (i , j +1) and τ(i , j ) = (i +1, 2j ).
Note that in these formulas, arithmetic is performed modulo 2 in the first coordinate and
modulo 5 in the second coordinate. It is straightforward but tedious to check that 〈ρ,τ〉
is a subgroup of the automorphism group of the Petersen graph with the labeling shown
in Figure 2.1.

• (1, 0)

•(1, 4)

•(1, 3) •(1, 2)

•
(1, 1)

•(0, 0)

•(0, 4)

•
(0, 3)

•
(0, 2)

• (0, 1)

Figure 2.1: The Petersen graph.

Additionally, τ−1(i , j ) = (i −1, 3j ) as

τ−1τ(i , j ) = τ−1(i +1, 2j ) = (i +1−1, 3(2j )) = (i , j ).

Also,

τ−1ρτ(i , j ) = τ−1ρ(i +1, 2j ) = τ−1(i +1, 2j +1) = (i +1−1, 3(2j +1)) = (i , j +3) =ρ3(i , j )

and so 〈ρ〉 � 〈ρ,τ〉. Then by Theorem 2.2.3 the orbits of 〈ρ〉, which are the sets {{i , j } : j ∈
�5} : i ∈�2} form a complete block system of 〈ρ,τ〉.

Although we will not show this here, the full automorphism group of the Petersen
graph is primitive.

A complete block system of G formed by the orbits of normal subgroup of G is called
a normal complete block system of G . Note that not every complete block system� of
every transitive group G is a complete block system of G , as we shall see.

Now suppose that G ≤�n is a transitive group which admits a complete block system
� consisting m blocks of size k . Then G has an induced action on� , which we denote
by G /� . Namely, for specific g ∈ G , we define g /� (B ) = B ′ if and only if g (B ) = B ′,
and set G /� = {g /� : g ∈G }. We also define the fixer of� in G , denoted fixG (� ), to
be {g ∈ G : g /� = 1}. That is, fixG (� ) is the subgroup of G which fixes each block of
� set-wise. Furthermore, fixG (� ) is the kernel of the induced homomorphism G →S� ,
and as such is normal in G . Additionally, |G |= |G /�| · |fixG (� )|.

A transitive group G is regular if StabG (x ) = 1 for any (and so all) x .
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Theorem 2.2.5 Let G ≤ �n be transitive with an abelian regular subgroup H. Then any
complete block system of G is normal, and is formed by the orbits of a subgroup of H.

PROOF. We only need show that fixH (� ) has orbits of size |B |, B ∈ � . Now, H/� is
transitive and abelian, and so H/� is regular (a transitive abelian group is regular as
conjugation permutes the stabilizers of points - so in a transitive abelian group, point
stabilizers are all equal). Then H/� has degree |�|, and so there exists nontrivial K ≤
fixH (� ) of order |B |. Then the orbits of K form a complete block system � of H by
Theorem 2.2.3, and each block of� is contained in a block of� . As K has order |B |, we
conclude that� =� . �

Lemma 2.2.6 Let G act transitively on X , and let x ∈ X . Let H ≤G be such that StabG (x )≤
H. Then the orbit of H that contains x is a block of G .

PROOF. Set B = {h(x ) : h ∈H} (so that B is the orbit of H that contains x ), and let g ∈G .
We must show that B is a block of G , or equivalently, that g (B ) = B or g (B ) ∩ B = .
Clearly if g ∈H , then g (B ) = B as B is the orbit of H that contains x and x ∈ B . If g �∈H ,
then towards a contradiction suppose that g (B )∩B �= , with say z ∈ g (B )∩B . Then there
exists y ∈ B such that g (y ) = z and h, k ∈H such that h(x ) = y and k (x ) = z . Then

z = g (y ) = g h(x ) = k (x ) = z ,

and so g h(x ) = k (x ). Thus k−1 g h ∈ StabG (x ). This then implies that g ∈ k · StabG (x ) ·
h−1 ≤H , a contradiction. Thus if g �∈H , then g (B )∩ B = , and B is a block of G . �

Example 2.2.7 Consider the subgroup of the automorphism group of the Petersen graph
〈ρτ〉 that we saw before. Straightforward computations will show that |τ| = 4, and so
|〈ρ,τ〉| = 20 as |ρ| = 5. By the Orbit-Stabilizer Theorem, we have that Stab〈ρ,τ〉(0, 0) has
order 2, and as τ2 stabilizes (0, 0), Stab〈ρ,τ〉(0, 0) = 〈τ2〉. Then 〈τ〉 ≤ 〈ρ,τ〉 and contains
Stab〈ρ,τ〉(0, 0). Then the orbit of 〈τ〉 that contains (0, 0) is a block of 〈ρ,τ〉 as well. This
orbit is {(0, 0), (1, 0)}. So the corresponding complete block system of 〈ρ,τ〉 consists of
the vertices of the “spoke" edges of the Petersen graph.

Just as we may examine the stabilizer of a point in a transitive group G , we may also
examine the stabilizer of the block B in an imprimitive group G . It is denoted StabG (B ),
is a subgroup of G , and StabG (B ) = {g ∈G : g (B ) = B}.
Theorem 2.2.8 Let G act transitively on X , and let x ∈ X . Let Ω be the set of all blocks B of
G which contain x , and S be the set of all subgroups H ≤G that contain StabG (x ). Define
φ : Ω→ S by φ(B ) = StabG (B ). Then φ is a bijection, and if B ,C ∈ Ω, then B ⊆ C if and
only if StabG (B )≤ StabG (C ).

PROOF. First observe that StabG (x ) ≤ StabG (B ) for every block B with x ∈ B , so φ is
indeed a map fromΩ to S. We first show thatφ is onto. Let H ∈S so that StabG (x )≤H . By
Lemma 2.2.6, B = {h(x ) : h ∈H} is a block of G . Then H ≤φ(B ). Towards a contradiction,
suppose there exists g ∈φ(B ) such that g �∈H . Then g (B ) = B , and H is transitive in its
action on B (Exercise 2.2.12). Hence there exists h ∈ H such that h(x ) = g (x ), and so
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h−1 g (x ) = x ∈ StabG (x ) ≤ H . Thus h−1 g ∈ H so g ∈ H , a contradiction. Thus φ(B ) = H
andφ is onto.

We now show that φ is one-to-one. Suppose B ,C ∈ Ω and φ(B ) = φ(C ). Then
StabG (B ) = StabG (C ). Towards a contradiction, suppose that y ∈ B but y �∈C . As StabG (B )
is transitive on B , there exists h ∈ StabG (B ) such that h(x ) = y . But then h ∈ StabG (C ) =
StabG (B ) and so y is in the orbit of StabG (C ) that contains x , which is C , a contradiction.
Thusφ is one-to-one and onto, and so a bijection.

Finally, it remains to show that if B ,C ∈ Ω, then B ⊆ C if and only if StabG (B ) ≤
StabG (C ). First suppose that StabG (B ) ≤ StabG (C ). Then the orbit of StabG (C ) that con-
tains x certainly contains the orbit of StabG (B ) that contains x , and so B ⊆C . Conversely,
suppose that B ⊆C . Let g ∈ StabG (B ). Then g (x ) ∈ B ⊆C , and so x ∈C ∩ g (C ). As C is a
block of G , we have that g (C ) =C so that g ∈ StabG (C ). Thus StabG (B )≤ StabG (C ). �

Theorem 2.2.9 Let G be a transitive group acting on X . If ≡ is an equivalence relation
on X such that x ≡ y if and only if g (x ) ≡ g (y ) for all g ∈G (a G -congruence), then the
equivalence classes of ≡ form a complete block system of G .

PROOF. Let Bx be an equivalence class of ≡ that contains x , and x ∈ X , g ∈G . Then

g (Bx ) = {g (y ) : y ∈ X and x ≡ y }
= {g (y ) : g (y )≡ g (x )}
= Bg (x ).

As the equivalence classes of ≡ form a partition of X , it follows that g (Bx )∩ Bx =  or Bx ,
and so Bx is a block of G . Also, as g (Bx ) = Bg (x ), the set of all blocks conjugate to Bx is
just the set of equivalence classes of ≡. �

A common application of the above result is to stabilizers of points, as in a transitive
group, any two point stabilizers are conjugate (Exercise ?.?).

Exercise 2.2.10 Verify that if B is a block of G , then g (B ) is also a block of G for every
g ∈G .

Exercise 2.2.11 Verify that if� is a complete block system of G acting on X , then� is a
partition of X .

Exercise 2.2.12 Let G act transitively on X , and suppose that B is a block of G . Then
StabG (B ) is transitive on B.

Exercise 2.2.13 Show that a transitive group of prime degree is primitive.

Exercise 2.2.14 Let G ≤�n with� a complete block system of G . Ifφ ∈�n , thenφ(� ) is
aφGφ−1-invariant partition.

Exercise 2.2.15 A group G acting on X is doubly-transitive if whenever (x1, y1), (x2, y2) ∈
X ×X such that x1 �= y1 and x2 �= y2, then there exists g ∈G such that g (x1, y1) = (x2, y2).
Show that a doubly-transitive group is primitive.
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Exercise 2.2.16 Let G ≤ �n contain a regular cyclic subgroup R = 〈(0 1 . . . n − 1) and
admit a complete block system� consisting of m blocks of size k . Show that� consists of
cosets of the unique subgroup of �n of order k .

Exercise 2.2.17 Let p and q be distinct primes such that q divides p − 1. Determine the
number of complete block systems of GL where G is the nonabelian group of order pq that
consist of blocks of cardinality q and of cardinality p .

Exercise 2.2.18 Let G be a transitive group of square-free degree (an integer that is square-
free is not divisible by the square of any prime). Show that G has at most one normal G -
invariant partition with blocks of prime size p . (Hint: Suppose there are at least two such
G -invariant partitions�1 and�2. Consider what happens to fixG (�2) in G /�1.)

Exercise 2.2.19 Let G ≤�n be transitive. Show that G is primitive if and only if StabG (x )
is a maximal subgroup of G for every x ∈�n .

2.3 Notions of “Sameness" of Permutation Groups

First, a group G may be represented as a permutation group in different ways. We first
need to be able to distinguish when two such representations are essentially the same,
or are different.

Definition 2.3.1 We say that the action of G on sets A and B are permutation equivalent
if there exists a bijection λ : A→ B such that λ(g (x )) = g (λ(x )) for all x ∈ A and g ∈G .

On obvious way in which G can have equivalent actions on different sets A and B are
if |A |= |B |, and we simply relabel the elements of A with elements of B . In this case, the
defining equation λ(g (x )) = g (λ(x )) for all x ∈ A and g ∈G states that if we apply g to x
and then relabel, then this is the same as if we relabel x and then apply g to the relabelled
x . For our purposes, we will be concerned with transitive groups. The following result is
used in practice to determine if two actions of G are equivalent.

Theorem 2.3.2 Let G act transitively on A and B. Then the action of G on A is equivalent
to the action of G on B if and only if the stabilizer in G of a point in A is the stabilizer of a
point in B.

PROOF. Suppose that the action of G on A is equivalent to the action of G on B . Then
there exists a bijection λ : A → B such that λ(g (x )) = g (λ(x )) for all x ∈ A and g ∈G . Let
K = StabG (z ), where z ∈ B , and y ∈ A such that λ(y ) = z . Let k ∈ K . As k (z ) = z , we have
that

λ(k (y )) = k (λ(y )) = k (z ) = z .

As λ is a bijection, k (y ) = λ−1(z ) = y , and so k stabilizes y . Thus K ≤ StabG (y ), and
as G is transitive on A and B and |A | = |B |, by the Orbit-Stabilizer Theorem we see that
K = StabG (y ).

Now suppose that StabG (a ) = StabG (b ) for some a ∈ A and b ∈ B . Define λ : A �→ B
by λ(g (a )) = g (b ). We first need to show that λ is well-defined. That is, that regardless of
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choice of g , λ(x ) = y , x ∈ A, y ∈ B , is the same. So we need to show that if g (a ) = h(a ),
then g (b ) =λ(g (a )) =λ(h(a )) = h(b ). Now,

g (a ) = h(a ) ⇒ h−1 g (a ) = a

⇒ h−1 g ∈ StabG (a )

⇒ h−1 g (b ) =b

⇒ g (b ) = h(b )

⇒ λ(g (a )) =λ(h(a ))

and so λ is indeed well-defined. Also, as G is transitive on A, λ has domain A, and as G
is transitive on B , λ is surjective, and hence bijective. Finally, let x ∈ A. Then there exists
hx ∈G such that hx (a ) = x . Then

λ(g (x )) = λ(g hx (a ))

= g hx (b )

= gλ(hx (a ))

= gλ(x ).

�

Definition 2.3.3 Let G ≤ SA and H ≤ SB . Then G and H are permutation isomorphic if
there exists a bijectionλ : A→ B and a group isomorphismφ : G →H such thatλ(g (x )) =
φ(g )(λ(x )) for all x ∈ A and g ∈G .

Intuitively, in addition to relabeling the set on which G acts (via λ), we also relabel
the group (via the homomorphismφ).

Theorem 2.3.4 Let G be a transitive group acting on A that admits a complete block sys-
tem� . Then the action of StabG (B ) on B and the action of StabG (B ′) on B ′ are permu-
tation isomorphic. Additionally, the action of fixG (� ) on B is permutation isomorphic to
the action of fixG (� ) on B ′.

PROOF. Let � ∈ G such that �(B ) = B ′. Define λ : B → B ′ by λ(x ) = �(x ). As � maps B
bijectively to B ′, λ is a bijection. Define φ : StabG (B )→ StabG (B ′) by φ(g ) = �g �−1. As
φ is obtained by conjugation, φ is a group isomorphism. Let g ∈ StabG (B ), and x ∈ B .
Then

λ(g (x )) = �g (x ) = �g �−1�(x ) =φ(g )λ(x ),

and so the action of StabG (B ) on B is permutation isomorphic to the action of StabG (B ′)
on B ′. Analogous arguments will show that the action of fixG (� ) on B is permutation
isomorphic to the action of fixG (� ) on B ′. �
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2.4 An Example of Inequivalent Actions:
The Automorphism Group of the Heawood Graph

For a subspace S of �n
q , we denote by S⊥ the othogonal complement of S. That is, S⊥ =

{w ∈ �n
q : w · v = 0 for every v ∈ S}. Recall that S⊥ is a subspace of the vector space

�n
q . A line in �n

q is a one-dimensional subspace, while a hyperplane is the orthogonal
complement of a line (so a subspace of �n

q of dimension n −1). Note that the number of

lines and hyperplanes of �n
q are the same. In the case of �3

2 which contains 8 elements,
any nonzero vector gives rise to a line, so there are 7 lines and 7 hyperplanes.

Consider the graph whose vertex set is the lines and hyperplanes of �3
2, and a line is

adjacent to a hyperplane if and only if the line is contained in the hyperplane. We obtain
the following graph, which is isomorphic to the Heawood graph:

•〈(0, 0, 1)〉
•〈(1, 0, 0)〉
•〈(1, 1, 1)〉
•〈(1, 1, 0)〉
•〈(0, 1, 0)〉
•〈(1, 0, 1)〉
•〈(0, 1, 1)〉

• 〈(1, 1, 1)〉⊥

• 〈(1, 0, 0)〉⊥

• 〈(0, 1, 0)〉⊥

• 〈(0, 1, 1)〉⊥

• 〈(1, 1, 0)〉⊥

• 〈(0, 0, 1)〉⊥

• 〈(1, 0, 1)〉⊥

Figure 2.2: The Heawood graph labeled with the lines and hyperplanes of �3
2

Recall that GL(n ,�q ) is the general linear group of dimension n over the field �q .
That is GL(n ,�q ) is the group of all invertible n × n matrices with entries in �q , with
binary operation multiplication. In the literature, it is common to see GL(n ,q ) written
in place of GL(n ,�q ), a convention that we will follow. Of course, a linear transformation
maps lines to lines, so we can consider the action of GL(3, 2) on the lines of�3

2, and obtain
the group PGL(3, 2), which is isomorphic to GL(3, 2). Note that PGL(3, 2) also permutes
the hyperplanes of �3

2. Of course, an element of PGL(3, 2) maps a line contained in a
hyperplane to a line contained in a hyperplane, and so PGL(3, 2) is contained in Aut(Hea),
where Hea is the Heawood graph. Notice that PGL(3, 2) is transitive on the lines of �3

2 and
transitive on the hyperplanes of �3

2.
Now define τ : L ∪H → L ∪H by τ{�, h} = {h⊥,�⊥}. Note that τ is well-defined, as

the subspace orthogonal to a line is a hyperplane, while the subspace orthogonal to a
hyperplane is a line. Clearly |τ| = 2 as (s⊥)⊥ = s . In order to show that τ ∈ Aut(Hea), let
� ∈ L and h ∈H such that �⊂ h. Then every vector in h⊥ is orthogonal to every vector in
h, and as � ⊂ h, every vector in h⊥ is orthogonal to every vector in �. Thus h⊥ ⊂ �⊥ and
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so if �h ∈ E (Hea), then τ(�h)∈ E (Hea). Thus τ∈Aut(H ).

Lemma 2.4.1 Let g ∈GL(n ,q ), and s a subspace of �n
q . Then g (s⊥)⊥ = (g −1)T (s ).

PROOF. First recall that if w , v ∈ �n
q , then the dot product of w and v , w · v , can also

be written as w T v , where for a matrix g , g T denotes the transpose of g . Let w1, . . . , wr

be a basis for s⊥, so that g (s⊥) has basis g w1, . . . , g wr . In order to show that g (s⊥)⊥ =
(g −1)T (s ), it suffices to show that (g −1)T v is orthogonal to g wi for any i and v ∈ s as
dim(s )+dim(s⊥) = n . Then

(g wi ) · (g −1)T v = (g wi )T (g −1)T v =w T
i g T (g −1)T v =w T

i v = 0.

�

Consider the canonical action of PGL(3, 2)on L∪H , so that g ∈ PGL(3, 2), then g (�, h) =
{g (�), g (h)}. Now, let g ∈ PGL(3, 2), which will consider in the above action on L∪H . Then

τ−1 gτ({�, h}) = τ−1 g ({h⊥,�⊥})
= τ−1({g (h⊥), g (�⊥)})
= {g (�⊥)⊥, g (h⊥)⊥}
= {(g −1)T (�), (g −1)T (h)}

Then τ−1 gτ= g −1)T so PGL(3, 2) � 〈PGL(3, 2),τ〉.
Now, 〈PGL(3, 2),τ〉 admits a complete block system � with 2 blocks of size 7. The

subgroup of PGL(3, 2) that stabilizes a line does not stabilize any hyperplane! So we have
that PGL(3, 2) acts inequivalently on the lines and hyperplanes. It can be shown using a
theorem of Tutte that Aut(Hea) = 〈PGL(3, 2),τ〉.

2.5 The Embedding Theorem

Definition 2.5.1 Let Γ1 and Γ2 be digraphs. The wreath product of Γ1 and Γ2, denoted
Γ1 �Γ2 is the digraph with vertex set V (Γ1)×V (Γ2) and edge set

{(u , v )(u , v ′) : u ∈V (Γ1) and v v ′ ∈ E (Γ2)}∪ {(u , v )(u ′, v ′) : u u ′ ∈ E (Γ1) and v, v ′ ∈V (Γ2)}.
Intuitively, Γ1 � Γ2 is constructed as follows. First, we have |V (Γ1)| copies of the digraph
Γ2, with these |V (Γ1)| copies indexed by elements of V (Γ1). Next, between corresponding
copies of Γ2 we place every possible directed from one copy to another if in Γ1 there is an
edge between the indexing labels of the copies of Γ2, and no edges otherwise.

To find the wreath product of any two graphs Γ1 and Γ2 (see Figure 2.3):

1. First corresponding to each vertex of Γ1, put a copy of Γ2.

2. If v1 and v2 are adjacent in Γ1, put every edge between corresponding copies of Γ2.
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Γ1•0 • 1

Γ2

•a

•d

•b

•c

Γ1 �Γ2

•(0, a )

•(0,b )

•(0, c )

•(0, d )

• (1, a )

• (1,b )

• (1, c )

• (1, d )

Figure 2.3: Γ1 �Γ2

C8 • 2

•1•0•7
•6

•5 •
4

•
3

K̄2

•a • b

Figure 2.4: C8

C8 � K̄2

•
(0, a )

• (1,b )

• (2,b )

•
(3,b )

•
(4,b )

•
(5,b )

•(6,b )

•(7,b )

•(0,b )

•
(1, a )

• (2, a )

• (3, a )

•(4, a )
•(5, a )

•(6, a )

•
(7, a )

Figure 2.5: C8 � K̄2

Let us consider the graph C8 � K̄2 (see Figure 2.5).

In the previous graph, think of the sets {(i , j ) : j ∈ �2} as blocks. Take any automor-
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phism of C8, and think of it as “permuting" the blocks. A block is mapped to a block by
any automorphism of K̄2, and we can have different automorphisms of K̄2 for different
blocks. This is the group Aut(C8) �Aut(K̄2).

Definition 2.5.2 Let G be a permutation group acting on X and H a permutation group
acting on Y . Define the wreath product of G and H , denoted G �H , to be the set of all
permutations of X ×Y of the form (x , y )→ (g (x ), hx (y )).

Intuitively, the wreath product G �H has elements of G permuting |X | copies of Y ,
and as an element of G permutes these copies, the copies of Y are mapped to each via
elements of H . Crucially, the elements of H chosen to map copies of Y mapped to each
other are chosen independently.

Example 2.5.3 We show the group �p ��p ≤ Sp 2 has order p p+1 and consequently is a
Sylow p -subgroup of Sp 2 . As �p ��p = {(i , j ) �→ (i + a , j + bi ) : a ,bi ∈ �p }, we see that
|�p ��p = p p+1 as there are p choices for a , as well as p choices for each of the p bi . As
the multiples of p dividing p 2! are p , 2p , . . . , (p − 1)p , p 2, we see that the largest power of
p dividing p 2! is p p+1.

Definition 2.5.4 Let G be a transitive permutation group acting on X that admits a com-
plete block system� . Then the action of G on� induces a permutation group in S� ,
which we denote by G /� . More specifically, if g ∈ G , then define g /� : � → � by
g /� (B ) = B ′ if and only if g (B ) = B ′, and set G /� = {g /� : g ∈G }.
Theorem 2.5.5 Let G be a transitive permutation group acting on X that admits a com-
plete block system� . Then G is permutation isomorphic to a subgroup of

(G /� ) � (StabG (� )|B0 ),

where B0 ∈� .

PROOF. For each B ∈ � , there exists h B such that h B (B0) = B . Define λ : X →� × B0

by λ(x ) = (B ,x0), where x ∈ B and x0 = h−1
B (x ). Define φ : G → (G /� ) � (StabG (� )|B0 ) by

φ(g )(B ,x0) = (g (B ), h−1
g (B )g h B (x0)). We must show that λ is a bijection, φ is an injective

homomorphism, and that λ(g (x )) =φ(g )(λ(x )) for all x ∈ X and g ∈G .
In order to show that λ is a bijection, it suffices to show that λ is one-to-one as by

Theorem 2.2.2 it is certainly the case that |X | = |� × B0|. Let x ,x ′ ∈ X and assume that
(B ,x0) = λ(x ) = λ(x ′). Clearly then both x and x ′ are contained in B , and x0 = h−1

B (x ) =
h−1

B (x
′). As h B is a permutation, it follows that x = x ′ and λ is one-to-one and so a bijec-

tion.
To show that φ is injective, suppose that φ(g ) =φ(g ′). Applying the definition of φ,

we see that

(g (B ), h−1
g (B )g h B (x0)) = (g ′(B ), h−1

g ′(B )g
′h B (x0)),

for all B ∈ � and x0 ∈ B0. It immediately follows that g /� = g ′/� and h−1
g (B )g h B =

h−1
g ′(B )g

′h B . Using the fact that g /� = g ′/� and canceling, we see that g = g ′ and φ is
injective.
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Let g 1, g 2 ∈G . Then

φ(g 1)φ(g 2)(B ,x0) = φ(g 1)(g 2(B ), h g −1
2 (B )

g 2h B (x0))

= (g 1 g 2(B ), h−1
g 1(g 2(B ))

g 1h g 2(B )(h
−1
g 2(B )

g 2h B (x0))

= (g 1 g 2(B ), h−1
g 1 g 2(B )

g 1 g 2h B (x0))

= φ(g 1 g 2)(B ,x0),

and soφ is a homomorphism.

Finally, observe that φ(g )(λ(x )) =φ(g )(B ,x0) = (g (B ), h−1
g (B )g h B (x0))while

λ(g (x )) = (g (B ), h−1
g (B )g (x )) = (g (B ), h−1

g (B )g h B (x0)),

and so λ(g (x )) =φ(g )(λ(x )) for all x ∈ X and g ∈G . �

The following immediate corollary is often useful.

Corollary 2.5.6 Let G be a transitive permutation group that admits a complete block sys-
tem� consisting of m blocks of size k . Then G is permutation isomorphic to a subgroup
of Sm �Sk .

One must be slightly careful with this labeling, as it is not always the most natural
labeling. For example, let q and p be prime with q |(p − 1) and α ∈ �∗p of order q . Define
ρ,τ : �q × �p �→ �q × �p by τ(i , j ) = (i + 1,αj ) and ρ(i , j ) = (i , j + 1). Then 〈ρ,τ〉 is
isomorphic to the nonabelian group of order qp . The labeling that one would get for
this group by applying the Embedding Theorem is 〈ρ′,τ′〉, where ρ′(i , j ) = (i , j + αi ),
τ′(i , j ) = (i +1, j ).

Exercise 2.5.7 Draw the graph K4 � K̄3.

Exercise 2.5.8 Show that G �H has order |G | · (|H |)|X |, where G acts on X .

Exercise 2.5.9 Show that a Sylow p -subgroup of Sp k , k ≥ 1 is �p ��p � · · · ��p , where the
wreath product is taken k times.

Exercise 2.5.10 Verify that the graph wreath product is associative.

Exercise 2.5.11 Verify that the permutation group wreath product is associative.

Exercise 2.5.12 Show that Aut(Γ̄1 � Γ̄2) = Aut(Γ1 �Γ2).

Exercise 2.5.13 For vertex-transitive graphsΓ1 andΓ2, show that Aut(Γ1)�Aut(Γ2)≤ Aut(Γ).
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2.6 A Graph Theoretic Tool

Let G be a transitive group that admits a normal complete block system� consisting of
m blocks of prime size p . Then fixG (� )|B is a transitive group of prime degree p , and so
contains a p -cycle. Define a relation≡ on� by B ≡ B ′ if and only if whenever γ∈ fixG (� )
then γ|B is a p -cycle if and only if γ|B ′ is also a p -cycle (here γ|B is the induced permuta-
tion of g on B). It is straightforward to verify that ≡ is an equivalence relation (Exercise
2.6.2). Let C be an equivalence class of ≡ and EC = ∪B∈C B (remember that the equiva-
lence classes of ≡ consist of blocks of�), and � = {EC : C is an equivalence class of C }.

Lemma 2.6.1 Let Γ be a digraph with G ≤ Aut(Γ) admit a normal complete block system
� consisting of m blocks of prime size p . Let ≡ and � be defined as in the preceding
paragraph. Then � is a complete block system of G and for every g ∈ fixG (� ), g |E ∈Aut(Γ)
for every E ∈ � . Here g |E (x ) = g (x ) if x ∈ E while g (x ) = x if x �∈ E .

PROOF. We will first show that �/� is a complete block system of G /� by showing that
≡ is a G /�-congruence and applying Theorem 2.2.9. This will then imply that � is a
complete block system of G . We thus need to show that if B ≡ B ′ and g ∈G , then g (B )≡
g (B ′) for every g ∈G . Suppose that g (B ) �≡ g (B ′). Then there exists γ∈ fixG (� ) such that
γ|g (B )|B is a p -cycle but γ|g (B ′) is not a p -cycle. Let b ∈ B . Then g −1γg (b ) = g −1γ(g (b ))
and so g −1γg |B is a p -cycle, while a similar argument shows that g −1γg |B is not. We
conclude that if B ≡ B ′ then g (B )≡ g (B ′) and so � is indeed a complete block system of
G .

Now suppose that B �≡ B ′. We will first show that in Γ, either every vertex of B is
our or in adjacent to every vertex of B ′, or there is no edge between any vertex of B and
any vertex of B ′. So, suppose that there is an edge from say B to B ′. As B �≡ B ′, there is
γ ∈ fixG (� ) such that γ|B is a p -cycle while γ|B ′ is not a p -cycle. Raising γ to the power
|γ|B ′ |which is relatively prime to γ, we may assume without loss of generality that γ|B ′ = 1.
Let the directed edge �b0b ′ ∈ E (Γ), where b0 ∈ B and b ′ ∈ B ′. As γ|B is a p -cycle, we may
write γ|B = (b0 b1 . . . bp−1) (i.e. we are writing γ|B as a p -cycle starting at b0). Applying
γ to the edge �b0b ′, we obtain the edge �b1b ′, and applying γ to the edge �b0b ′ r times, we
obtain the edge �br b ′. We conclude that �bb ′ ∈ E (Γ) for every b ∈ B . Now, there exists
δ ∈ fixG (� ) such that δ|B ′ is a p -cycle. Applying δ to each of the edges �bb ′ p − 1 times
(similar to above), we have that the edges �bb ′ ∈ E (Γ) for every b ∈ B and b ′ ∈� . Similar
arguments will show that if �b ′b ∈ E (Γ) for some b ′ ∈ B ′ and b ∈ B , then �b ′b ∈ E (Γ) for
every b ′ ∈ B ′ and b ∈ B , as well as if bb ′ ∈ E (Γ) for some b ,b ′ ∈ E (Γ), then bb ′ ∈ E (Γ) for
all b ∈ B and b ′ ∈ B ′.

Now, let γ ∈ fixG (� ), and consider the map γ|E , E ∈ � . If e = �x y ∈ E (Γ) and both
x , y ∈ E , then surely γ|E (e ) = γ(e ) ∈ E (Γ). Similarly, if both x , y �∈ E , then γ|E (e ) = e ∈
E (Γ). If x ∈ E but y �∈ E (Γ), then let Bx , By ∈ � such that x ∈ Bx and y ∈ By . Then
�x ′y ′ ∈ E (Γ) for every x ′ ∈ Bx , y ′ ∈ By by arguments above. Also, γ(x ) = x ′ ∈ Bx , and so
γ|E (e ) = �x ′y ∈ E (Γ). An analogous argument will show that γ|E (e ) ∈ E (Γ) if x �∈ E but
y ∈ E . As in every case, γ|E ∈ E (Γ), we have that γ|E ∈Aut(Γ) establishing the result. �

The above result also holds in the more general situation that fixG (� ) acts primitively
on B ∈� .
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Exercise 2.6.2 Write a careful proof that ≡ is an equivalence relation.

2.7 Basic Definitions Concerning Graphs

Definition 2.7.1 Let G be a group and S ⊂ G . Define a Cayley digraph of G , denoted
Cay(G ,S) to be the graph with V (Cay(G ,S)) =G and E (Cay(G ,S)) = {(g , g s ) : g ∈G , s ∈S}.
We call S the connection set of Cay(G ,S).

•0
•9

•8

•7

•
6 •

5

•
4

• 3

• 2

•1

Figure 2.6: The Cayley graph Cay(�10,{1, 3, 7, 9}).
If we additionally insist that S = S−1 = {s−1 : s ∈ S} (or if the group is abelian and

the operation is addition, that S =−S), then there will be no directed edges in Cay(G ,S),
and we obtain a Cayley graph. This follows as if (g , g s ) ∈ E (Cay(G ,S)) and s−1 ∈ S, then
(g s , g s (s−1)) = (g s , s ) ∈ E (Cay(G ,S)). In many situations, whether or not a Cayley di-
graph has loops doesn’t have any effect. In these cases the default is usually to exclude
loops by also insisting that 1G �∈S (or 0 �∈S if G is abelian and the operation is addition).

Perhaps the most common Cayley digraphs that one encounters are Cayley digraphs
of the cyclic groups �n of order n , as in Figure 2.6. A Cayley (di)graph of �n is called a
circulant (di)graph of order n .

Definition 2.7.2 For a group G , the left regular representation , denoted GL , is the sub-
group of SG given by the left translations of G . More specifically, GL = {x → g x : g ∈G }.
We denote the map x → g x by g L . It is straightforward to verify that GL is a group and
that GL

∼=G .

Let x , y ∈G , and g = y x−1. Then g L(x ) = y x−1x = y so that GL is transitive on G .

Lemma 2.7.3 For every S ⊆G , GL ≤ Aut(Cay(G ,S)).
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PROOF. Let e = (g , g s ) ∈ E (Cay(G ,S), where g ∈G and s ∈ S. Let h ∈G . We must show
that hL(e ) ∈ E (Cay(G ,S)), or that hL(e ) = (g ′, g ′s ′) for some g ′ ∈ G and s ′ ∈ S. Setting
g ′ = h g and s ′ = s , we have that

hL(e ) = hL(g , g s ) = (h g , h(g s )) = (h g , (h g )s ) = (g ′, g ′s ′).
�

In general, for an abelian group G , the group GL will consist of “translations by g "
that map x → x + g . That is, GL = {x → x + g : g ∈G }. More specifically, for a cyclic group
�n , we have that �n is generated by the map x → x +1 (or course instead on 1, one could
put any generator of �n ).

The following important result of G. Sabidussi [?] characterizes Cayley graphs.

Theorem 2.7.4 A graph Γ is isomorphic to a Cayley graph of a group G if and only if Aut(Γ)
contains a regular subgroup isomorphic to G .

PROOF. If Γ ∼= Cay(G ,S) with φ : Γ → Cay(G ,S) an isomorphism, then by Lemma 2.7.3,
Aut(Cay(G , s )) contains the regular subgroup GL

∼=G , namelyφ−1GLφ (see Exercise 2.7.6).
Conversely, suppose that Aut(Γ) contains a regular subgroup H ∼=G , with ω : H →G an
isomorphism. Fix v ∈ V (Γ). As H is regular, for each u ∈ V (Γ), there exists a unique
hu ∈ H such that hu (v ) = u . Define φ : V (Γ) → G by φ(u ) = ω(hu ). Note that as
each hu is unique, φ is well-defined and is also a bijection as ω is a bijection. Let
U = {u ∈V (Γ) : (v, u )∈ E (Γ)}. We claim thatφ(Γ) =Cay(G ,φ(U )).

As φ(V (Γ)) = G , V (φ(Γ)) = G . Let e ∈ E (φ(Γ)). We must show that e = (g , g s ) for
some g ∈G and s ∈φ(U ). As e ∈ E (φ(Γ)), φ−1(e ) = (u 1, u 2) ∈ E (Γ) by Exercise 2.7.6. Let
w ∈ V (Γ) such that hu 1 (w ) = u 2. Then h−1

u 1
(u 1, u 2) = (v, w ) so that w = hw (v ) ∈U , and

hu 2 = hu 1 hw as hu 1 hw (v ) = hu 1 (w ) = u 2. Thus

(u 1, u 2) = (hu 1 (v ), hu 1 (w )) = (hu 1 (v ), hu 1 hw (v )) = (hu 1 (v ), hu 2 (v )).

Set g =ω(hu 1 ) and s =ω(hw ). Then

φ(u 1, u 2) = (ω(hu 1 ),ω(hu 2 )) = (ω(hu 1 ),ω(hu 1 hw )) = (ω(hu 1 ),ω(hu 1 )ω(hw )) = (g , g s )

as required. �

We now prove a well-known result first proven by Turner [?].

Theorem 2.7.5 Every transitive group of prime degree p contains a cyclic regular sub-
group. Consequently, every vertex-transitive digraph is isomorphic to a circulant digraph
of order p .

PROOF. Let G be a transitive group of prime degree p . As G is transitive, it has one orbit
of size p , and so p divides |G |. Hence G has an element of order p , which is necessarily
a p -cycle permuting all of the points. So G contains a regular cyclic subgroup, and the
result follows by Theorem 2.7.4. �
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Exercise 2.7.6 Show that if φ : Γ→ Γ′ is a graph isomorphism, then φ−1 : Γ′ → Γ is also a
graph isomorphism. Then show that if H ≤ Aut(Γ′), thenφ−1Hφ ≤ Aut(Γ).

Exercise 2.7.7 Show that (�m )L � (�n )L contains a regular subgroup isomorphic to �m n .
Consequently, the wreath product of two circulant digraphs is a circulant digraph.

Exercise 2.7.8 Show that for any two groups G and H, GL �HL contains a regular subgroup
isomorphic to G ×H. Deduce that the wreath product of two Cayley digraphs is a Cayley
digraph.

2.8 An Application to Graphs

Definition 2.8.1 Let m and n be positive integers, and α ∈ �∗n . Define ρ,τ : �m ×�n �→
�m ×�n by ρ(i , j ) = (i , j + 1) and τ(i , j ) = (i + 1,αj ). A vertex-transitive Γ digraph with
vertex set �m ×�n is an (m , n )-metacirculant digraph if and only if 〈ρ,τ〉 ≤ Aut(Γ).

The Petersen graph is a (2, 5)-metacirculant graph with α = 2, while the Heawood
graph is a (2, 7)-metacirculant graph with α= 6.

Lemma 2.8.2 Let ρ :�m ×�n �→�m ×�n by ρ(i , j ) = (i , j +1). Then ZSm n (〈ρ〉) = {(i , j ) �→
(σ(i ), j +bi ) :σ ∈Sn ,bi ∈�n}=Sm � (�n )L.

PROOF. Straightforward computations will show that every element of {(i , j ) �→ (σ(i ), j +
bi ) does indeed centralize 〈ρ〉. Then ZSm n (〈ρ〉) is transitive asρ ∈ZSm n (〈ρ〉). Additionally,
〈ρ〉�ZSm n (〈ρ〉), and so the orbits� of 〈ρ〉 form a complete block system of ZSm n (〈ρ〉). Let
B ∈� , and g ∈ StabZSm n (〈ρ〉)(B ). Then g |B commutes with 〈ρ〉|B , and as 〈ρ〉|B is a regular
cyclic group, it is self-centralizing (we have already seen that a transitive abelian group
is regular in the proof of Theorem 2.2.5. The subgroup generated by any element that
centralizes a regular abelian group and the regular abelian group is a transitive abelian
group, and so regular.) Then StabZSm n (〈ρ〉)(B )|B ≤ 〈ρ〉|B , and so by the Embedding Theo-
rem 2.5.5, ZSm n (〈ρ〉)≤Sm � (�n )L . As Sm � (�n )L ≤ZSm n (〈ρ〉), the result follows. �

Theorem 2.8.3 A vertex-transitive digraph Γ of order qp , q and p distinct primes, is iso-
morphic to a (q , p )-metacirculant digraph if and only if Aut(Γ) has a transitive subgroup
G that contains a normal complete block system� with q blocks of size p .

PROOF. If Γ is isomorphic to a (q , p )-metacirculant, then after an appropriate relabeling,
〈ρ,τ〉 ≤ Aut(Γ). Then 〈ρ〉 � 〈ρ,τ〉=G has orbits of length p .

Conversely, suppose that there exists N �G ≤ Aut(Γ) and N has orbits of length p .
Let� be the complete block system formed by the orbits of N , and assume that G is the
largest subgroup of Aut(Γ) that admits� . Then G /� is transitive, and so G contains an
element τ such that 〈τ〉/� is cyclic of order q (and so regular), and τ has order a power
of q . By Lemma 2.6.1 there exists ρ ∈ G such that 〈ρ〉 is semiregular of order p , and a
Sylow p -subgroup P of fixG (� ) has order p or pq . If |P | = pq , then if there is a directed
edge in Γ from some vertex of B to some vertex of B ′, B , B ′ ∈ � , then there is a directed
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edge from every vertex of B to every vertex of B ′. We conclude that Γ is isomorphic to
a wreath product of vertex-transitive digraphs of order q and p , respectively, and so by
Theorem 2.7.5, Γ is isomorphic to the wreath product of a circulant digraph of order q
and a circulant digraph of order p . By Exercise 2.8.4, Γ is isomorphic to a Cayley digraph
of �q ×�p , and every such digraph is isomorphic to a (q , p )-metacirculant digraph by
Exercise 2.8.5. We henceforth assume that |P |= p .

Now, 〈ρ〉 and τ−1〈ρ〉τ are contained in Sylow p -subgroups P1 and P2 of fixG (� ), re-
spectively, and so there exists δ ∈G such that δ−1P2δ = P1. Replacing τ with τδ, if nec-
essary, we assume without loss of generality that τ−1〈ρ〉τ ≤ P1. As |P1| = |P2| = p , we
see that τ−1〈ρ〉τ = 〈ρ〉. We now label the vertex set of Γ with elements of �q × �p in
such a way that ρ(i , j ) = (i , j + 1), and τ(i , j ) = (i + 1,ωi (j )), where ωi ∈ Sp , i ∈ �q . Set
τ−1ρτ = ρa , where a ∈ �∗p . Define ā : �q × �p → �q × �p by ā (i , j ) = (i , a j ). Then
ā−1ρa ā =ρ. Then τā centralizes 〈ρ〉, and so by Lemma 2.8.2, we see that τā ∈ {(i , j ) �→
(σ(i ), j +bi ) :σ ∈ Sq ,bi ∈ �p }. We conclude that τā (i , j ) = (i + 1, j +bi ), bi ∈ �p , and so
τ(i , j ) = (i +1, a−1 j + ci ), ci ∈�p .

Let H = 〈τ, z k : k ∈ �q 〉, where z k (i , j ) = (i , j +δi k ), where δi k is Kronecker’s delta
function. That is δi k = 1 if i = k and 0 otherwise. Note that 〈z k : k ∈ �q 〉 �H and H/〈z k :
k ∈ �q 〉 ∼= 〈τ〉. We conclude that 〈τ〉 is a Sylow q-subgroup of H . Now let, τ′ : �q ×�p �→
�q × �p by τ′(i , j ) = (i + 1, a−1 j ). Then τ′ ∈ H and also has order |τ|, and so 〈τ′〉 is a
Sylow q-subgroup of H as well. Thus there exists γ ∈ H such that γ−1〈τ〉γ = 〈τ′〉. Also,
〈ρ〉�H , and so γ−1〈ρ〉γ= 〈ρ〉, and so γ−1〈ρ,τ〉γ= 〈ρ,τ′〉. Then Γ is isomorphic to a (q , p )-
metacirculant digraph. �

Exercise 2.8.4 Show that for any two groups G and H, GL �HL contains a regular subgroup
isomorphic to G ×H. Deduce that the wreath product of two Cayley digraphs is a Cayley
digraph.

Exercise 2.8.5 Let n be a positive integer and n = m k , where gcd(m , k ) = 1. Show that
any circulant digraph of order n is isomorphic to an (m , k )-metacirculant digraph.

2.9 A General Strategy for Analyzing Imprimitive Permutation
Groups with Blocks of Prime Size - Especially Automorphism
Groups of Vertex-transitive Digraphs

Let G be a transitive group that admits a complete block system� with blocks of prime
size p . If � is not a normal complete block system, then G /� is a transitive faithful
representation of G , so hopefully one can use induction... Otherwise, � is normal. If
fixG (� ) is not faithful on B ∈ � , then in the general case, one cannot say much about
fixG (� ) other than the normalizer of a Sylow p -subgroup of fixG (� ) is a vector space
invariant under its normalizer, which is transitive. Tools from linear algebra may be em-
ployed - not promising but not hopeless either. In the case of the automorphism group
of a vertex-transitive graph, one may employ Lemma 2.6.1 in which case the Sylow p -
subgroup of fixG (� ) has a very restrictive structure as we have seen. If fixG (� ) is faithful
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on B ∈ � there are three cases to consider. The first is when fixG (� ) ∼= �p . This is
the most difficult case to deal with, and nothing more will be said of this case now. If
fixG (� ) �= �p , then there are two subcases, depending on whether or not the action of
fixG (� ) on B , B ′ ∈� are always equivalent or if the are inequivalent. We now investigate
this...

Lemma 2.9.1 Let G ≤ Sn be transitive on V and admit a normal complete block system
� with blocks of size p . Suppose that fixG (� ) �= �p is faithful on B ∈ � . Define an
equivalence relation ≡ on V by v1 ≡ v2 if and only if StabfixG (� )(v1) = StabfixG (� )(v2). Then
the equivalence classes of ≡ are blocks of G , and each equivalence class of ≡ contains at
most one point of B ∈� .

PROOF. As conjugation by an element of G maps the stabilizer of a point in fixG (� ) to the
stabilizer of a point in fixG (� ), ≡ is a G -congruence, and so by Theorem 2.2.9 the equiv-
alence classes of ≡ are blocks of G . If a block contains two points from the same equiva-
lence class, then by first part of this lemma applied to fixG (� )|B , we see that fixG (� )|B is
imprimitive. But a transitive group of prime degree is primitive, a contradiction. �

Let � be the complete block system consisting of the equivalence classes of ≡ in the
previous lemma. Suppose that each equivalence class of≡ contains exactly one element
of each B ∈ � . This means that |B ∩ E | = 1 for every B ∈ � and E ∈ � . Two complete
� and � of G such that |B ∩C | = 1 for every B ∈ � and C ∈ � are called orthogonal
complete block systems. Observe that if� and � are orthogonal and� consists of m
blocks of size k , then� consists of k blocks of size m .

Lemma 2.9.2 Let n = m k and G ≤ Sn such that G is transitive and admits orthogonal
complete block systems� and� of m blocks of size k and k blocks of size m , respectively.
Then G is permutation equivalent to a subgroup of Sk ×Sm in its natural action on �k ×
�m .

PROOF. Note that G has a natural action on� ×� given by g (B ,C ) = (g (B ), g (C )), and
that in this action each g ∈ G induces a permutation contained in S� × S� , namely,
(g /� , g /� ). Any element of G in the kernel of this representation of G must fix every
block of� and every block of� . As |B ∩C |= 1 for every B ∈� and C ∈� , and there are
exactly m k = n such intersections, the kernel of this representation is the identity and
the representation is faithful. Let B ∈ � and C ∈ � . If g ∈G stabilizes the point (B ,C )
in this representation, then g (B ) = B and g (C ) = C . Let B ∩C = {x }. Then g (x ) = x .
Conversely, if g (x ) = x , then there exists B ∈ � and C ∈ � such that x ∈ B and x ∈ � .
Then g (B ,C ) = (B ,C ) so StabG (x ) = StabG ((B ,C )). It then follows by Theorem 2.3.2 that
these two actions of G are equivalent. �

Combining the two previous lemmas we have:

Lemma 2.9.3 Let G ≤ Sn be transitive on V and admit a normal complete block system
� with blocks of size p . Suppose that fixG (� ) �= �p is faithful on B ∈ � . If the action
of fixG (� ) on B and B ′ are always equivalent, then G is permutation isomorphic to a
subgroup of Sn/p ×Sp .
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We now illustrate these techniques by calculating the full automorphism group of
circulant digraphs of order p 2, where p is prime.

Theorem 2.9.4 Let Γ be a circulant digraph of order p 2, p an odd prime. Then one of the
following is true:

• (�p 2 )L �Aut(Γ), or

• Aut(Γ) = Aut(Γ1) �Aut(Γ2)where, Γ1 and Γ2 are circulant digraphs of prime order, or

• Γ= Kp 2 or its complement and Aut(Γ) =Sp 2 .

Note: The result is simpler if p = 2, and as |S4| = 24, everything can be easily deter-
mined by hand.
PROOF. A Burnside group is a group G with the property that whenever H ≤Sn contains
G as a regular subgroup, then either H is doubly-transitive or H is imprimitive. Here, H
is doubly-transitive if whenever we have two order pairs (x1, y1) and (x2, y2) with x1 �= y1

and x2 �= y2, then there exists h ∈ H such that h(x1, y1) = (x2, y2). Schur showed that a
cyclic group of composite order is a Burnside group [?, Theorem 3.5A]. So Aut(Γ) is either
imprimitive or doubly-transitive. If Aut(Γ) is doubly-transitive, then Γ is either Kp 2 or its
complement and the result follows. Otherwise, Aut(Γ) admits a complete block system
� consisting of p blocks of size p . (In the case �q ×�p , we still have a Burnside group,
while for �p ×�p , the possibilities for a simply primitive group are given explicitly by the
O’Nan-Scott Theorem.)

Letρ :�p 2 �→�p 2 byρ(i ) = i+1 (mod p 2), so that 〈ρ〉 is a regular subgroup of Aut(Γ) of
order p 2.� is then necessarily normal, and formed by the orbits of a normal subgroup of
〈ρ〉 of order p . There is a unique such subgroup, namely 〈ρp 〉. Consider the equivalence
relation≡ on� by B ≡ B ′ if and only if whenever γ∈ fixG (� ) then γ|B is a p -cycle if and
only if γ|B ′ is also a p -cycle. By Lemma 2.6.1, the union of the equivalence classes of ≡
form a complete block system � , and ρp |E ∈ Aut(Γ) for every E ∈ � . If � has blocks of
size p , then � =� , and Γ is isomorphic to the wreath product of two circulant digraphs
of prime order. A result of Sabidussi [?] then gives (2).

If � consists of one block of size p 2, then fixAut(Γ)(� ) acts faithfully on B ∈ � as
otherwise, as a normal subgroup of a primitive group is necessarily transitive, the kernel
K of the action of fixAut(Γ)(� ) on B ∈� is transitive on some B ′ ∈� , and so K has order
divisible by p . Then K contains an element which is a p -cycle on B ′ and the identity on
B , and so B �≡ B ′. We first consider when fixAut(Γ)(� ) �∼=�p .

We now wish to apply a famous result of Burnside which states that a transitive group
of prime degree is either permutation isomorphic to a subgroup of AGL(1, p ) = {x �→
a x +b : a ∈ �∗p ,b ∈ �p }, or is a doubly-transitive group with nonabelian socle. A con-
sequence of the Classification of the Finite Simple groups is that all doubly-transitive
groups are known [?, Table], and then one can show (by examining each possible case),
that a doubly-transitive group either has 1 or 2 inequivalent representations. If H ≤
AGL(1, p ) is transitive and not isomorphic to �p (note that p will divide |H |), then |H | =
a p , a > 1. Then StabH (x ) has order a , and as AGL(1, p ) is solvable of order p (p −1), H is
solvable and gcd(a , p ) = 1. By Hall’s Theorem, any two subgroups of order a are conju-
gate in H . We conclude by Theorem 2.3.2 that H has a unique representation of degree
p .
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Now define an equivalence relation ≡′ on �p 2 by i ≡ j if and only if StabfixAut(Γ) (i ) =
StabfixAut(Γ) (j ). Note that as fixAut(Γ)(� ) is primitive on B ∈ � , no equivalence class of ≡′
can contain more than one element of B ∈ � . If there is a unique representation of
fixAut(Γ)(� ) as a transitive group of degree p , then the equivalence classes of ≡′ form an
orthogonal complete block system of Aut(Γ). However, as �p 2 contains a unique sub-
group of order p and every complete block system is normal, there is no such orthog-
onal complete block system, a contradiction! (Note that if �p 2 is replaced with �p ×�p

of �q ×�p , there is no contradiction, but we still are done as then Aut(Γ) is contained
in a direct product and it is easy to figure out what happens). We thus assume that
fixG (� )∼=�p .

Of course Aut(Γ)/� is a transitive group of prime degree, so by Burnside’s Theorem
it is either contained in AGL(1, p ) or is a doubly-transitive group with nonabelian socle.
If Aut(Γ)/� ≤ AGL(1, p ), then as AGL(1, p ) contains a normal Sylow p -subgroup which
is necessarily 〈ρ〉/� , we see that 〈ρ〉 �Aut(Γ) and the result follows. I will not really talk
about the other case - it doesn’t really have much to do with imprimitive groups, and is
also the hardest case. I will say that in the case under consideration, this cannot occur,
while if q �= p it not only can occur, but in fact has two different outcomes. For �p ×�p it
also can occur but only has the obvious outcome of being something like H ×�p , where
H ≤Sp . �

2.10 Further Reading

Extensions of Burnside’s Theorem to transitive groups of degree p 2 as well as the full
automorphism groups of all vertex-transitive digraphs of order p 2 can be found in [?].
An extension of Burnside’s Theorem for transitive groups that contain a regular cyclic
group of prime-power order can be found in [?]. An extension of Burnside’s Theorem for
groups that contain a regular abelian Hall π-subgroup is in [?]. Some information about
transitive groups of degree qp can be found in [?], together with the full automorphism
groups of all vertex-transitive graphs of order qp . An extension of Burnside’s Theorem
for a regular semidirect product of two cyclic groups of prime-power degree can be found
in [?] (we remark that while the results in this paper are stated only for graphs, the graph
structure is not used much - so the result is not explicitly stated, but can be extracted).

2.11 Selected References

[1] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. London
Math. Soc. 13 (1981), no. 1, 1–22.

[2] J. D. Dixon and B. Mortimer, “Permutation groups, Graduate Texts in Mathematics”,
vol. 163, Springer-Verlag, New York, 1996.

[3] E. Dobson, On groups of odd prime-power degree that contain a full cycle, Discrete
Math. 299 (2005), no. 1–3, 65–78.

[4] E. Dobson, Automorphism groups of metacirculant graphs of order a product of two
distinct primes, Combin. Probab. Comput. 15 (2006), no. 1–2, 105–130.



42 2.11 Selected References

[5] E. Dobson, C. H. Li and P. Spiga, Permutation groups containing a regular abelian
Hall subgroup, Comm. Algebra 40 (2012), no. 9, 3532–3539.

[6] E. Dobson and D. Witte, Transitive permutation groups of prime-squared degree, J.
Algebraic Combin. 16 (2002), no. 1, 43–69.

[7] C. H. Li and H. S. Sim, On half-transitive metacirculant graphs of prime-power order,
J. Combin. Theory Ser. B 81 (2001), no. 1, 45–57.

[8] G. Sabidussi, On a class of fixed-point-free graphs, Proc. Amer. Math. Soc. 9 (1958),
800–804.

[9] G. Sabidussi, The composition of graphs, Duke Math. J. 26 (1959), 693–696.

[10] J. Turner, Point-symmetric graphs with a prime number of points, J. Combinatorial
Theory 3 (1967), 136–145.



Chapter 3

Leonard pairs and the q-Racah
polynomials

Prof. Tatsuro Ito
Kanazawa University, Japan

SUMMARY

A dual system of orthogonal polynomials arises from the Bose-Mesner algebra of an asso-
ciation scheme that is metric and cometric (or P- and Q-polynomial in Delsarte-Bannai’s
term). D. Leonard classified such orthogonal polynomials and they turned out to be in
one to one correspondence with the q-Racah polynomials or certain limits of these poly-
nomials.

P. Terwilliger interpreted the above dual system of orthogonal polynomials as two lin-
ear transformations each acting in an irreducible tridiagonal fashion on an eigenbasis of
the other one. He called such linear transformations a Leonard pair. He classified them
and established a representation theory for them. This immediately leads to a classi-
fication of dual systems of orthogonal polynomials as well as a characterization of the
q-Racah polynomials including their limiting cases.

The theme of my lectures will be Terwilliger’s theory of Leonard pairs. After a brief
introduction to the relation between a Leonard pair and a dual system of orthogonal
polynomials, I will introduce a raising map R and a lowering map L via the split decom-
position (weight-space decomposition) attached to a Leonard pair. The eigenvalues of
the Leonard pair will be written explicitly by the Askey-Wilson parameters. The key here
is the tridiagonal relations (TD-relations). It turns out that the TD-relations nearly char-
acterize Leonard pairs.

I will then introduce pre-Leonard pairs, relaxing the conditions for Leonard pairs,
and ask when a pre-Leonard pair is a Leonard pair. The keys here are Terwilliger’s lemma
and the Askey-Wilson relations. We show that a pre-Leonard pair is a Leonard pair if and
only if the data of the pre-Leonard pair, i.e., the eigenvalues together with the local traces
of LR, allow Askey-Wilson parametrizations. This estasblishes a bijection between the set
of data and the isomorphism classes of Leonard pairs. It also gives a way to construct a
Leonard pair for each admissible data.

Finally I will explicitly write down dual systems of orthogonal polynomials as q-Racah
polynomials and explain the limiting cases.
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