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Introduction

The definition of a Cayley graph was introduced by Arthur Cayley in 1878

to explain the concept of an abstract group generated by a set of generators.

This definition has two main sources: group theory and graph theory.

Group theory studies algebraic structures known as groups. A group is

a set of elements with an operation on these elements such that the set and

the operation must satisfy to the group axioms, namely closure, associativ-

ity, identity and invertibility. The earliest study of groups as such probably

goes back to the work of Lagrange in the late 18th century. However, this

work was somewhat isolated. Publications of Augustin Louis Cauchy and

Évariste Galois are more commonly referred to as the beginning of group

theory. Évariste Galois, in the 1830s, was the first to employ groups to

determine the solvability of polynomial equations. Arthur Cayley and Au-

gustin Louis Cauchy pushed these investigations further by creating the

theory of permutation group.

Graph theory studies discrete structures known as graphs to model pair-

wise relations between objects from a certain collection. So, a graph is a

collection of vertices or nodes and a collection of edges that connect pairs

of vertices. It is known that the first paper in the history of graph the-

ory was written by Leonhard Euler on the Seven Bridges of Königsberg

and published in 1736 [15]. The city of Königsberg in Prussia (now Kalin-

ingrad, Russia) was set on both sides of the Pregel River, and included

two large islands which were connected to each other and the mainland by

seven bridges. The problem was to find a walk through the city that would

cross each bridge once and only once. Euler proved that the problem has

no solution.

There is also a big branch of mathematics in which algebraic methods

are applied to problems about graphs. This is algebraic graph theory

5
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involving the use of group theory and the study of graph invariants. One

of its branches also studies Cayley graphs with properties related to the

structure of the group.

In the last fifty years, the theory of Cayley graphs has been developed

to a rather big branch in algebraic graph theory. It has relations with

many practical problems, and also with some classical problems in pure

mathematics such as classification, isomorphism or enumeration problems.

There are problems related to Cayley graphs which are interesting to graph

and group theorists such as hamiltonian or diameter problems, and to

computer scientists and molecular biologists such as sorting by reversals.

These Notes are based on the lectures I gave in May–June 2012 at Uni-

versity of Primorska FAMNIT in Koper, Slovenia, in the frame of “2012

Graph Theory Semester”. They consist of selected problems on Cayley

graphs. First of all, we pay attention to the hamiltonian and diameter

problems for Cayley graphs. We discuss combinatorial conditions for hamil-

tonicity, Lovász and Babai conjectures, hamiltonicity of Cayley graphs on

the symmetric group and hamiltonicity of Cayley graphs on finite groups

with a small generating set. The diameter problem is considered for abelian

and non–abelian groups (there is a fundamental difference for them), for

the Pancake graphs (unburnt and burnt cases). The interesting fact is that

the diameter problem appears in some popular games, for instance, in the

Rubik’s cube puzzle. Recently it was shown that every position of Rubik’s

cube can be solved in twenty moves or less, which represents the diameter

of a corresponding Cayley graph. In general, computing the diameter of

an arbitrary Cayley graph over a set of generators is NP–hard. We also

emphasize the variety of applications of Cayley graphs in solving combina-

torial and graph–theoretical problems and show how these graphs connect

with applied problems in molecular biology and computer sciences. Special

thanks go to Alexey Medvedev on helping in preparing pictures for these

Lecture Notes.



Chapter 1

Definitions, basic properties and

examples

In this section, basic definitions are given, notation is introduced and ex-

amples of graphs are presented. We also discuss some combinatorial and

structural properties of Cayley graphs that we will be used later. For more

definitions and details on graphs and groups we refer the reader to the

books [13, 14, 18, 60].

1.1 Groups and graphs

Let G be a finite group. The elements of a subset S of a group G are called

generators of G, and S is said to be a generating set, if every element of

G can be expressed as a finite product of generators. We also say that

G is generated by S. The identity of a group G will be denoted by e

and the operation will be written as multiplication. A subset S of G is

identity free if e �∈ S and it is symmetric (or closed under inverses) if s ∈ S

implies s−1 ∈ S. The last condition can be also denoted by S = S−1, where

S−1 = {s−1 : s ∈ S}.
A permutation π on the set X = {1, . . . , n} is a bijective mapping (i.e.

one–to–one and surjective) fromX toX. We write a permutation π in one–

line notation as π = [π1π2 . . . πn] where πi = π(i) are images of elements

for every i ∈ {1, . . . , n}. The group of all permutations acting on the

set {1, . . . , n} is called the symmetric group and denoted by Symn. The

cardinality of the symmetric group Symn is defined by the number of all its

elements, that is |Symn| = n! . In particular, the symmetric group Symn

7
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[213]

[231]

[312]

[132]

[321]
[123]

[213] [231]

[321]

[312][132]

[123]

Sym3(T ) K3,3�

is generated by transpositions swapping any two neighbors elements of a

permutations that is the generating set S = {(1 2), (2 3), . . . , (n − 1n)}.
This set of generators is also known as the set of the (n − 1) Coxeter

generators of Symn and it is an important instance in combinatorics of

Coxeter groups (for details see [16]).

Let S ⊂ G be the identity free and symmetric generating set of a finite

group G. In the Cayley graph Γ = Cay(G, S) = (V, E) vertices correspond

to the elements of the group, i.e. V = G, and edges correspond to mul-

tiplication on the right by generators, i.e. E = {{g, gs} : g ∈ G, s ∈ S}.
The identity free condition is imposed so that there are no loops in Γ. The

reason for the second condition is that an edge should be in the graph no

matter which end vertex is used. So when there is an edge from g to gs,

there is also an edge from gs to (gs)s−1 = g.

For example, if G is the symmetric group Sym3, and the generating set

S is presented by all transpositions from the set T = {(1 2), (2 3), (1 3)},
then the Cayley graph Sym3(T ) = Cay(Sym3, T ) is isomorphic to K3,3

(see Figure 1). Here Kp,q is the complete bipartite graph with p and q

vertices in the two parts, respectively.

Figure 1. The Cayley graph Sym3(T ) is isomorphic to K3,3

Let us note here that if the symmetry condition doesn’t hold in the

definition of the Cayley graph then we have the Cayley digraphs which are

not considered in these Lecture Notes.
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u v

u′

v′

1.2 Symmetry and regularity of graphs

Let Γ = (V, E) be a finite simple graph. A graph Γ is said to be regular

of degree k, or k–regular if every vertex has degree k. A regular graph of

degree 3 is called cubic.

A permutation σ of the vertex set of a graph Γ is called an automorphism

provided that {u, v} is an edge of Γ if and only if {σ(u), σ(v)} is an edge

of Γ. A graph Γ is said to be vertex–transitive if for any two vertices u

and v of Γ, there is an automorphism σ of Γ satisfying σ(u) = v. Any

vertex–transitive graph is a regular graph. However, not every regular

graph is a vertex–transitive graph. For example, the Frucht graph is not

vertex–transitive (see Figure 1.) A graph Γ is said to be edge–transitive if

for any pair of edges x and y of Γ, there is an automorphism σ of Γ that

maps x into y. These symmetry properties require that every vertex or

every edge in a graph Γ looks the same and these two properties are not

interchangeable. The graph Γ presented in Figure 2 is vertex–transitive but

not edge–transitive since there is no an automorphism between edges {u, v}
and {u′, v′}. The complete bipartite graph Kp,q, p �= q, is the example of

edge–transitive but not vertex–transitive graph.

Figure 2. The Frucht graph: regular but not vertex–transitive;

vertex–transitive but not edge–transitive graph Γ.

The Frucht graph Γ
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Figure 3.

The Petersen graph Graph Γ

Figure 3 presents the Petersen graph that is vertex–transitive and edge–

transitive, and a graph Γ that is neither vertex– nor edge–transitive.

Proposition 1.2.1 Let S be a set of generators for a group G. The Cayley

graph Γ = Cay(G, S) has the following properties:

(i) it is a connected regular graph of degree equal to the cardinality of S;

(ii) it is a vertex–transitive graph.

Proof. Indeed, S is required to be a generating set of G so that Γ is

connected. Since S is symmetric then every vertex in Γ = Cay(G, S) has

degree equal to |S|. Thus, the graph Γ = Cay(G, S) is regular of degree

equal to the cardinality of S. The Cayley graph Cay(G, S) is vertex–

transitive because the permutation σg, g ∈ G, defined by σg(h) = gh for all

h ∈ G is an automorphism. �

Proposition 1.2.2 Not every vertex–transitive graph is a Cayley graph.

Proof. The simplest counterexample is the Petersen graph, which is a

vertex–transitive but not a Cayley graph. The Petersen graph has order

10, it is cubic and its diameter is 2. This statement can be checked directly

by examining of pairs (G, S) where G would have to be a group of order 10

and the size of S would have to be 3. There are only two nonisomorphic

groups of order 10 and, checking all 3–sets S in each with the identity

free and symmetric properties, one finds that each gives a diameter greater

than 2. This proof was given by Biggs [14]. �
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v S1(v) Sd(v)S2(v)

a1

k 1 b1
c2 b2

a2 ad

cd

Denote by d(u, v) the path distance between the vertices u and v in Γ,

and by diam(Γ) = max{d(u, v) : u, v ∈ V } the diameter of Γ. In particular,

in a Cayley graph the diameter is the maximum, over g ∈ G, of the length

of a shortest expression for g as a product of generators. Let

Sr(v) = {u ∈ V (Γ) : d(v, u) = r} and Br(v) = {u ∈ V (Γ) : d(v, u) � r}

be the metric sphere and the metric ball of radius r centered at the vertex

v ∈ V (Γ), respectively. The vertices u ∈ Br(v) are r–neighbors of the

vertex v. For v ∈ V (Γ) we put ki(v) = |Si(v)| and for u ∈ Si(v) we set

ci(v, u) = |{x ∈ Si−1(v) : d(x, u) = 1}|,

ai(v, u) = |{x ∈ Si(v) : d(x, u) = 1}|,
bi(v, u) = |{x ∈ Si+1(v) : d(x, u) = 1}|.

From this a1(v, u) = a1(u, v) is the number of triangles over the edge

{v, u} and c2(v, u) is the number of common neighbors of v ∈ V and

u ∈ S2(v). Let λ = λ(Γ) = maxv∈V, u∈S1(v) a1(v, u) and μ = μ(Γ) =

maxv∈V, u∈S2(v) c2(v, u).

A simple connected graph Γ is distance–regular if there are integers bi, ci
for i � 0 such that for any two vertices v and u at distance d(v, u) = i

there are precisely ci neighbors of u in Si−1(v) and bi neighbors of u in

Si+1(v). Evidently Γ is regular of valency k = b0, or k–regular. The

numbers ci, bi and ai = k− bi − ci, i = 0, . . . , d , where d = diam(Γ) is the

diameter of Γ, are called the intersection numbers of Γ and the sequence

(b0, b1, . . . , bd−1; c1, c2, . . . , cd) is called the intersection array of Γ.

The schematic representation of the intersection array for a distance–

regular graph is given below:
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u
v

w

Figure 4. The cyclic 6–ladder L6

A k–regular simple graph Γ is strongly regular if there exist integers λ

and μ such that every adjacent pair of vertices has λ common neighbors,

and every nonadjacent pair of vertices has μ common neighbors. A simple

connected graph Γ is distance–transitive if, for any two arbitrary–chosen

pairs of vertices (v, u) and (v′, u′) at the same distance d(v, u) = d(v′, u′),
there is an automorphism σ of Γ satisfying σ(v) = v′ and σ(u) = u′.

Proposition 1.2.3 Any distance–transitive graph is vertex–transitive.

This statement is obvious (consider two vertices at distance 0). How-

ever, the converse is not true in general. There exist vertex–transitive

graphs that are not distance–transitive. For instance, the cyclic 6–ladder

L6 is clearly vertex–transitive – we can rotate and reflect it (see Figure 4).

However, it is not distance–transitive since there are two pairs of vertices

u, v and u, w at distance two, i.e. d(u, v) = d(u, w) = 2, such that there is

no automorphism that moves one pair of vertices into the other, as there

is only one path between vertices u, w, while there are two paths for the

vertices u, v.

The following graphs are distance–transitive: the complete graphs Kn;

the cycles Cn; the platonic graphs that are obtained from the five Pla-

tonic solids: their vertices and edges form distance–regular and distance–

transitive graphs as well with intersection arrays {3; 1} for tetrahedron,

{4, 1; 1, 4} for octahedron, {3, 2, 1; 1, 2, 3} for cube, {5, 2, 1; 1, 2, 5} for icosa-
hedron, {3, 2, 1, 1, 1; 1, 1, 1, 2, 3} for dodecahedron; and many others.
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Figure 5. The Shrikhande graph: distance–regular, but
not distance–transitive

Proposition 1.2.4 Any distance–transitive graph is distance–regular.

This statement is also obvious. The converse is not necessarily true.

The smallest distance–regular graph that is not distance–transitive is the

Shrikhande graph presented in Figure 5 (for details we refer to [17]).

An example of a distance–regular but not distance–transitive or vertex–

transitive graph is the Adel’son–Vel’skii graph whose vertices are the 26

symbols xi, yi, i ∈ Z13 (Z13 is the additive group of integers modulo 13)

and in which the following vertices are adjacent:

1. xi adjacent xj ⇐⇒ |i− j| = 1, 3, 4.

2. yi adjacent yj ⇐⇒ |i− j| = 2, 5, 6.

3. xi adjacent yj ⇐⇒ i− j = 0, 1, 3, 9.

(all taken modulo 13). This graph is distance–regular with the intersection

array {10, 6; 1, 4}. However, it is not distance–transitive or even vertex–

transitive: there is no automorphism taking any xi to any yi.
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1.3 Examples

1.3.1 Some families of Cayley graphs

The complete graph Kn is a Cayley graph on the additive group Zn of

integers modulo n with generating set of all non–zero elements of Zn.

The circulant is the Cayley graph Cay(Zn, S) where S ⊂ Zn is an arbitrary

generating set. The most prominent example is the cycle Cn.

The multidimensional torus Tn,k, n � 2 , k � 2 , is the cartesian product

of n cycles of length k. It has kn vertices of degree 2n and its diameter is

n�k2�. It is the Cayley graph of the group Z
n
k that is the direct product of

Zk with itself n times, which is generated by 2n generators from the set

S = {(0, . . . , 0︸ ︷︷ ︸
i

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i−1

), (0, . . . , 0︸ ︷︷ ︸
i

,−1, 0, . . . , 0︸ ︷︷ ︸
n−i−1

), 0 � i � n− 1}.

The hypercube (or n–dimensional cube) Hn is the graph with vertex set

{x1x2 . . . xn : xi ∈ {0, 1}} in which two vertices (v1v2 . . . vn) and (u1u2 . . . un)

are adjacent if and only if vi = ui for all but one i , 1 � i � n. It is a

distance–transitive graph with diameter and degree of n and can be con-

sidered as a particular case of torus, namely Tn,2, since it is the cartesian

product of n complete graphs K2. It is the Cayley graph on the group Z
n
2

with the generating set S = {(0, . . . , 0︸ ︷︷ ︸
i

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i−1

), 0 � i � n− 1}.

The butterfly graph BFn is the Cayley graph with vertex set V = Zn×Z
n
2 ,

|V | = n · 2n, and with edges defined as follows. Any vertex (i, x) ∈ V ,

where 0 � i � n − 1 and x = (x0x1 . . . xn−1), is connected to (i + 1, x)

and (i+ 1, x(i)) where x(i) denotes the string, which is derived from x by

replacing xi by 1−xi. All arithmetic on indices i is assumed to be modulo

n. Thus, BFn is derived from Hn by replacing each vertex x by a cycle

of length n, however the vertices of this cycle are connected to vertices of

other cycles in a different way such that the degree is 4 (for n � 3). For

example, BF2 = H3 and BF1 = K2. The diameter of BFn is 	3n2 
. This

graph is not edge–transitive, not distance–regular and hence not distance–

transitive. This graph is also the Cayley graph on the subgroup of Sym2n

of n2n elements generated by (12 . . . 2n)2 and (12 . . . 2n)2(12).
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{2,0} {2,1} {2,2}

{1,0} {1,1} {1,2}

{0,0} {0,1} {0,2}

1.3.2 Hamming graph: distance–transitive Cayley graph

Let F n
q be the Hamming space (where Fq is the field of q elements) consist-

ing of the qn vectors (or words) of length n over the alphabet {0, 1, ..., q−
1}, q � 2. This space is endowed with the Hamming distance d(x, y)

which equals to the number of coordinate positions in which x and y differ.

This space can be viewed as the Hamming graph Ln(q) with vertex set

given by the vector space F n
q where {x, y} is an edge of Ln(q) if and only

if d(x, y) = 1. The Hamming graph Ln(q) is, equivalently, the cartesian

product of n complete graphs Kq. This graph has the following properties:

1. its diameter is n;

2. it is distance–transitive and Cayley graph;

3. it has intersection array given by bj = (n − j)(q − 1) and cj = j for

0 � j � n.

Indeed, the Hamming graph is the Cayley graph on the additive group

F n
q when we take the generating set S = {xei : x ∈ (Fq)

×, 1 � i � n}
where (Fq)

× is the cartesian product of Fq and ei = (0, ..., 0, 1, 0, ...0) are

the standard basis vectors of F n
q .

For the particular case n = 2 the Hamming graph L2(q) is also known

as the lattice graph over Fq. This graph is strongly regular with parameters

|V (L2(q))| = q2, k = 2(q− 1), λ = q− 2, μ = 2. The lattice graph L2(3) is

presented in Figure 6.

Figure 6. The lattice graph L2(3)
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{1,2}

{1,4}{1,3}

{2,4}{2,3}

{3,4}

1.3.3 Johnson graph: distance–transitive not Cayley graph

The Johnson graph J(n,m) is defined on the vertex set of the m–element

subsets of an n–element set. Two vertices are adjacent when they meet

in a (m − 1)–element set. On J(n,m) the Johnson distance is defined as

half the (even) Hamming distance, and two vertices x, y are joined by an

edge if and only if they are at Johnson distance one from each other. This

graph has the following properties:

1. its diameter d is min{m, n−m};
2. it is distance–transitive but not Cayley graph (for m > 2);

3. it has intersection array given by bj = (m− j)(n−m− j) and cj = j2

for 0 � j � d.

Let us note that J(n, 1) ∼= Kn and it is a Cayley graph. In general, to

show that the Johnson graph is not a Cayley graph just take n or n − 1

congruent to 2(mod 4). Then
(
n
2

)
is odd, etc.

In the particular case m = 2 and n � 4 the Johnson graph J(n, 2)

is known as the triangular graph T (n). As vertices it has the 2–element

subsets of an n–set and two vertices are adjacent if and only if they are

not disjoint. This graph is strongly regular with parameters |V (T (n))| =
n(n−1)

2 , k = 2(n − 2), λ = n − 2, μ = 4. The triangular graph T (4) is

presented in Figure 7.

Figure 7. The triangular graph T (4)
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1.3.4 Kneser graph: when it is a Cayley graph

The Kneser graph K(n, k), k � 1, n � 2k + 1, is the graph whose vertices

correspond to the k–element subsets of a set of n elements, and where two

vertices are connected if and only if two corresponding sets are disjoint.

The graph K(2n − 1, n − 1) is also referred as the odd graph On. The

complete graph Kn on n vertices is K(n, 1), and the Petersen graph is

K(5, 2) (see Figure 8). The graph K(n, k) has the following properties:

1. its diameter is � k−1
n−2k

�+ 1;

2. it is vertex–transitive and edge–transitive graph;

3. it is
(
n−k
k

)
–regular graph;

4. it is not, in general, a strongly regular graph.

The following theorem of Godsil provides the conditions on k which

imply that the corresponding Kneser graph is a Cayley graph.

Theorem 1.3.1 [35] Except the following cases, the Kneser graph K(n, k)

is not a Cayley graph:

(i) k = 2, n is a prime power and n ≡ 3 mod 4;

(ii) k = 3, n = 8 or 32.

Figure 8. The graph K(5, 2) is isomorphic to the Petersen graph



18 Definitions, basic properties and examples

1.3.5 Cayley graphs on the symmetric group

In this section we present Cayley graphs on the symmetric group Symn

that are applied in computer science, molecular biology and coding theory.

The Transposition graph Symn(T ) on Symn is generated by transposi-

tions from the set T = {ti,j ∈ Symn, 1 � i < j � n}, where ti,j transposes

the i–th and j–th elements of a permutation when multiplied on the right.

The distance in this graph is defined as the least number of transposi-

tions transforming one permutation into another. The transposition graph

Symn(T ), n � 3, has the following properties:

1. it is a connected graph of order n! and diameter n− 1;

2. it is bipartite
(
n
2

)
–regular graph;

3. it has no subgraphs isomorphic to K2,4;

4. it is edge–transitive but not distance–regular and hence not distance–

transitive (for n > 3).

This graph arises in molecular biology for analyzing transposons (genetic

transpositions) that are mutations transferring a chromosomal segment to

a new position on the same or another chromosome [69, 74]. It is also

considered in coding theory for solving a reconstruction problem [61].

The Bubble–sort graph Symn(t), n � 3, on Symn is generated by trans-

positions from the set t = {ti,i+1 ∈ Symn, 1 � i < n}, where ti,i+1 are

2–cycles interchanging i–th and (i+1)–th elements of a permutation when

multiplied on the right. This graph has the following properties:

1. it is a connected graph of order n! and diameter
(
n
2

)
;

2. it is bipartite (n− 1)–regular graph;

3. it has no subgraphs isomorphic to K2,3;

4. it is edge–transitive but not distance–regular and hence not distance–

transitive (for n > 3).

This graph arises in computer programming [58] and in computer science

to represent interconnection networks [39].
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The Star graph Sn = Symn(st) on Symn is generated by transpositions

from the set st = {t1,i ∈ Symn, 1 < i � n} with the following properties:

1. it is a connected graph of order n! and diameter 	3(n−1)
2


;
2. it is bipartite (n− 1)–regular graph;

3. it has no odd cycles but has even cycles of lengths 2 l, where 3 � l � 	n
2

;

4. it is edge–transitive but not distance–regular and hence not distance–

transitive (for n > 3).

This graph is one of the most investigated in the theory of intercon-

nection networks since many parallel algorithms are efficiently mapped on

this graph (see [1, 39, 59]). In [1] it is shown that the diameter of the Star

graph is 	3(n−1)
2 
. Moreover,

diam(Sn) =

{
3(n−1)

2 , if n odd,

1 + 3(n−2)
2

, if n > 3 even.

This is shown by considering the worst cases in a special sorting algorithm

and then by giving permutations requiring at least 	3(n−1)
2


 steps for this

algorithm. For odd n, the permutation π = [13254 . . . n n−1] is considered.

It is clear that three steps are needed to sort each pair (i i− 1) in π. Since

there are (n−1)
2

such pairs, hence the above diameter follows. Likewise, for

even n, the permutation π = [214365 . . . n n − 1] is considered. One can

swap position 2 with one, but the remaining (n−2)
2 pairs again each require

three. Thus, the indicated diameter again follows.

The Reversal graph Symn(R) is defined on Symn and generated by the

reversals from the set R = {ri,j ∈ Symn, 1 � i < j � n} where a reversal

ri,j is the operation of reversing segments [i, j], 1 � i < j � n, of a per-

mutation when multiplied on the right, i.e. [. . . πi πi+1 . . . πj−1 πj . . .]ri,j =

[. . . πj πj−1 . . . πi+1 πi . . .]. For n � 3 this graph has the following properties:

1. it is a connected graph of order n! and diameter n− 1;

2. it is
(
n
2

)
–regular graph;

3. it has no contain triangles nor subgraphs isomorphic to K2,4;
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4. it is not edge–transitive, not distance–regular and hence not distance–

transitive (for n > 3).

The reversal distance between two permutations in this graph, that is

the least number of reversals needed to transform one permutation into

another, corresponds to the reversal mutations in molecular biology. Re-

versal distance measures the amount of evolution that must have taken

place at the chromosome level, assuming evolution proceeded by inver-

sion. The analysis of genomes evolving by inversions leads to the combi-

natorial problem of sorting by reversals (for more details see Section 3.4).

This graph also appears in coding theory in solving a reconstruction prob-

lem [49, 50, 52].

The Pancake graph Pn = Cay(Symn, PR), n � 2, is the Cayley graph

on Symn with the generating set PR = {ri ∈ Symn, 2 � i � n} of all

prefix–reversals ri reversing the order of any substring [1, i], 2 � i � n, of a

permutation π when multiplied on the right, i.e. [π1 . . . πi πi+1 . . . πn] ri =

[πi . . . π1 πi+1 . . . πn]. For n � 3 this graph has the following properties:

1. it is a connected graph of order n!;

2. it is (n− 1)–regular graph;

3. it has cycles of length 6 � l � n!, but has no cycles of lengths 3,4,5;

4. it is not edge–transitive, not distance–regular and hence not distance–

transitive (for n � 4).

This graph is well known because of the combinatorial Pancake problem

which was posed in [28] as the problem of finding its diameter. The problem

is still open. Some upper and lower bounds [33, 40] as well as exact values

for 2 � n � 19 are known [4, 19]. One of the main difficulties in solving

this problem is a complicated cycle structure of the Pancake graph. As

it was shown in [43, 76], all cycles of length l, where 6 � l � n!, can be

embedded in the Pancake graph Pn, n � 3. In particular, the graph is a

Hamiltonian [81]. We will discuss all these problems on the Pancake graph

in the next sections.
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Hamiltonicity of Cayley graphs

Let Γ = (V, E) be a connected graph where V = {v1, v2, . . . , vn}. A Hamil-

tonian cycle in Γ is a spanning cycle (v1v2 . . . vnv1) that visits each vertex

exactly once, and a Hamiltonian path is a path (v1v2 . . . vn). A graph is

Hamiltonian if it contains a Hamiltonian cycle. The Hamiltonicity prob-

lem, that is to check whether a graph is a Hamiltonian, was stated by Sir

W.R. Hamilton in the 1850s (see [37]). Studying the Hamiltonian prop-

erty of graphs is a favorite problem for graph and group theorists. Testing

whether a graph is Hamiltonian is an NP–complete problem [32]. Hamil-

tonian paths and cycles naturally arise in computer science (see [59]), in

the study of word–hyperbolic groups and automatic groups (see [29]), and

in combinatorial designs (see [27]). For example, Hamiltonicity of the hy-

percube Hn is connected to a Gray code.

2.1 Hypercube graphs and a Gray code

A hypercube graph Hn = Ln(2) is a particular case of the Hamming graph

(see Section 1.3.2). It is a n–regular graph with 2n vertices presented by

vectors of length n. Two vertices are adjacent if and only if the corre-

sponding vectors differ exactly in one position. The hypercube graph Hn

is, equivalently, the cartesian product of n two–vertex complete graphs K2.

It is also a Cayley graph on the finite additive group Z
n
2 with the generating

set S = {(0, . . . , 0︸ ︷︷ ︸
i

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i−1

), 0 � i � n− 1}, where |S| = n.

It is well known fact that every hypercube graph Hn is Hamiltonian for

n > 1, and any Hamiltonian cycle of a labeled hypercube graph defines a

21
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Gray code [77]. More precisely there is a bijective correspondence between

the set of n–bit cyclic Gray codes and the set of Hamiltonian cycles in

the hypercube Hn. By the definition, the reflected binary code, also known

as a Gray code after Frank Gray, is a binary numeral system where two

successive values differ in only one bit.

The Gray code list for n bits can be generated recursively from the list

for n− 1 bits by reflecting the list (i.e. listing the entries in reverse order),

concatenating the original list with the reversed list, prefixing the entries

in the original list with a binary 0, and then prefixing the entries in the

reflected list with a binary 1. For example, generating the n = 3 list from

the n = 2 list we have:

STEP 1.

2–bit list: 00, 01, 11, 10;

reflected : 10, 11, 01, 00;

STEP 2.

prefix old entries with 0 : 000, 001, 011, 010;

prefix new entries with 1: 110, 111, 101, 100;

STEP 3.

concatenated: 000, 001, 011, 010, 110, 111, 101, 100.

So, for n = 3 the Gray code can be also presented as:

000 001 011 010 | 110 111 101 100.

and for n = 4 the Gray code is presented as:

0000 0001 0011 0010 0110 0111 0101 0100 | 1100 1101 1111 1110 1010 1011 1001 1000.

By the definition, Gray codes define the set of vectors of the hypercube

graphs such that two successive vectors differ in only one bit. Hence,

Gray codes correspond to the Hamiltonian path in the hypercube graphs.

Moreover, since the first and last vectors also differ in one position we

actually have the Hamiltonian cycles. The hypercube graphs H2, H3, H4

and their Hamiltonian cycles are presented in Figure 9.
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Figure 9. The hypercubes H2, H3, H4 and their Hamiltonian cycles.

Now let us consider combinatorial conditions for Hamiltonicity of Cayley

graphs obtained in the middle of 20th century and presented in the modern

style of proofs by Igor Pak and Radoš Radoičić [68].

2.2 Combinatorial conditions for Hamiltonicity

It seems that the problem of finding Hamiltonian cycles in Cayley graphs

was suggested for the first time by Rapaport–Strasser in 1959 [72]. Let

G be a finite group with a generating set S and |S| � 3. In this section

we consider simple relations on generators which suffice to prove that the

Cayley graph Γ = (G, S) contains a Hamiltonian cycle.

An element α ∈ G is called an involution, if α2 = 1.

Theorem 2.2.1 [72] Let G be a finite group generated by three involutions

α, β, γ such that αβ = βα. Then the Cayley graph Γ = Cay(G, {α, β, γ})
has a Hamiltonian cycle.

Proof. For every z ∈ G and every X ⊂ G, denote

ϑz(X) = {g ∈ G \X : g = xz, x ∈ X}.
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Denote by H = 〈β, γ〉 a subgroup of G of order |H| = 2m. Let X1 = H.

Since H is a dihedral group, X1 contains a Hamiltonian cycle:

1 → β → βγ → βγβ → . . . → (βγ)m−1β → (βγ)m = 1 (2.1)

We shall construct a Hamiltonian cycle in Γ by induction. At step i we

obtain a cycle which spans set Xi ⊂ G. Further, each Xi will satisfy the

condition ϑβ(Xi) = ϑγ(Xi) = ∅. This is equivalent to saying that each Xi

is a union of left cosets of H in G, where a left coset of H in G is the set

gH = {gh | h ∈ H} with g ∈ G. By definition, ϑβ(X1) = ϑγ(X1) = ∅. This
establishes the base of induction.

Now suppose Xi is as above. Then either ϑα(Xi) = ∅, in which case

the spanning cycle in Xi = G is the desired Hamiltonian cycle. Otherwise,

there exist y ∈ ϑα(Xi) ⊂ G\Xi. Observe that yH∩Xi = ∅, since otherwise
yh = x ∈ Xi for some h ∈ H. This implies that y = xh−1 ∈ Xi, since

h ∈ 〈β, γ〉 and zβ, zγ ∈ X for all z ∈ X.

Let Xi+1 = Xi ∪ yH. Clearly, ϑβ(Xi+1) = ϑγ(Xi+1) = ∅. By inductive

assumption, x = yα ∈ Xi lies on a cycle which spans Xi. Then x must

be connected to xβ and xγ, as xα−1 = y �∈ Xi. Consider a cycle in yH,

obtained by multiplying cycle in (2.1) by y. Recall that αβ = βα. This

implies xβα = yβ. Remove edges {x, xβ} and {y, yβ} from cycles in Xi

and yH, and add edges {x, y} and {xβ, yβ}. This gives a cycle which spans

Xi+1, and complete the proof. �

As an example, let us consider G = Sym2n+1 and three involutions

α = (12),

β = (12)(34) · · · (2n− 1 2n),

γ = (23)(45) · · · (2n 2n+ 1)

(we use cycle notation here). Observe that

β γ = (135 . . . 2n− 1 2n+ 1 2n 2n− 2 . . . 42),

so 〈α, β, γ〉 = Sym2n+1. Note that αβ = βα. Then Theorem 2.2.1 implies

that the Cayley graph Γ = Cay(G, {α, β, γ}) has a Hamiltonian cycle.

Cayley graphs on finite groups generated by two elements were consid-

ered by Rankin [71] in 1966. He obtained the following result.
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Theorem 2.2.2 [71] Let G be a finite group generated by two elements

α, β such that (αβ)2 = 1. Then the Cayley graph Γ = Cay(G, {α, β}) has
a Hamiltonian cycle.

Proof. Again, we use the same inductive assumption as in Theorem 2.2.1.

Moreover, we need a new simple label condition. Let H = 〈β〉, X1 = H,

and assume that ϑα(Xi) = ϑα−1(Xi) = ∅. We also assume, by induction,

that restriction of Γ to Xi contains an oriented Hamiltonian cycle Ci which

contains only labels β and α−1. We call these the label conditions.

The base of induction is obvious, namely ϑα(X1) = ϑα−1(X1) = ∅.
For the step of induction, consider y = xα ∈ ϑα(Xi) \ Xi. Note that

the edge oriented towards x ∈ Xi in Ci cannot have label α−1 (otherwise

it is {y, x} whereas y �∈ Xi), nor labels α or β−1 (by the label conditions).

Therefore, this edge has the only remaining label β, and {xβ−1, x} ∈ Ci.

Now consider a cycle R on yH with labels β on all edges, and observe

that

x → xα = y → xαβ = yβ → xβ−1 = xαβα → x

is a square which connects R and Ci. Formally, let

Ci+1 = Ci ∪ R+ {x, y}+ {yβ, xβ−1} − {xβ−1, x} − {y, yβ}

and observe that Ci is a Hamiltonian cycle on Xi+1 = Xi ∪ yH. Let Ci+1

inherit the orientation from Ci and check that now Ci+1 satisfies the label

conditions with respect to the orientation.

In the case when y = xα−1 �∈ Xi, we consider the edge leaving x ∈ Xi

and proceed verbatim. If ϑα(Xi) = ϑα−1(Xi) = ∅, we have Xi = G which

completes the proof. �

As an example, let us consider G = Symn, α = (12 . . . n), β = (23 . . . n).

Then αβ−1 = (1n) is an involution, and by Theorem 2.2.2 the Cayley graph

Γ = Cay(G, {α, β}) has a Hamiltonian cycle.

The both theorems are presented here with respect to the proof given

by Pak and Radoičić [68]. In Section 2.4 we will use these proofs to show

the result by Pak and Radoičić on Hamiltonicity of Cayley graphs on finite

groups with a small generating set.



26 Hamiltonicity of Cayley graphs

2.3 Lovász and Babai conjectures

There is a famous Hamiltonicity problem for vertex–transitive graphs which

was posed by László Lovász in 1970 and well–known as follows.

Problem 2.3.1 Does every connected vertex–transitive graph with more

than two vertices have a Hamiltonian path?

To be more precisely he stated a research problem in [63] asking how

one can

“ ... construct a finite connected undirected graph which is sym-

metric and has no simple path containing all the vertices. A graph

is symmetric if for any two vertices x and y it has an automor-

phism mapping x onto y.”

However, traditionally (see [25]) the problem is formulated in the posi-

tive and considered as the Lovász conjecture that every vertex–transitive

graph has a Hamiltonian path.

There are only four vertex–transitive graphs on more than two ver-

tices which do not have a Hamiltonian cycle, and all of these graphs

have a Hamiltonian path. They are the Petersen graph, the Coxeter

graph (it is a unique cubic distance–regular graph with intersection ar-

ray {3, 2, 2, 1; 1, 1, 1, 2} on 28 vertices and 42 edges presented in Figure 10)

and graphs obtained from each of these two graphs by replacing each ver-

tex with a triangle and joining the vertices in a natural way. In particular,

it is unknown of a vertex–transitive graph without a Hamiltonian path.

Furthermore, it was noted that all of the above four graphs are not Cayley

graphs. So several people made the following conjecture.

Conjecture 2.3.2 Every connected Cayley graph on a finite group has a

Hamiltonian cycle.

However, there is no consensus among experts what the answer on the

problem above will be. In particular, Bojan Mohar and Laszlo Babai both

made conjectures which are sharply critical of the Lovász problem. In 1996

Babai [6] made the following conjecture.
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Figure 10. The Coxeter graph

Conjecture 2.3.3 [6] For some ε > o, there exist infinitely many con-

nected vertex–transitive graphs (even Cayley graphs) Γ without cycles of

length � (1− ε)|V (Γ)|.
Later Mohar [66] investigated the matching polynomial μ(Γ, x) of a

graph Γ on n vertices defined as μ(Γ, x) =
∑[n/2]

0 (−1)kp(Γ, k)xn−2k, where

p(Γ, k) is the number of k–matching in Γ, and formulated the following

conjecture.

Conjecture 2.3.4 [66] For every integer p there exists a vertex–transitive

graph whose matching polynomial has a root of multiplicity at least p.

It is known (see [36]) that a graph whose matching polynomial has

a nonsimple root has no a Hamiltonian path. Hence, if such a vertex–

transitive graph exists then Lovász conjecture will be disproved.

All these conjectures are still open. Most results obtained so far about

the first conjecture on Cayley graphs were surveyed in 1996 by S. J. Curran

and J. A. Gallian in [25] for abelian and dihedral groups, for groups of

special orders, and certain extensions.

Let us recall that an abelian group is a group such that the order in which

the binary operation is performed doesn’t matter, and the dihedral group

of order 2n is the abstract group consisting of n elements corresponding
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to rotations of the polygon, and n corresponding to reflections. In 1983 it

was proved by Dragan Marus̆ic̆ [65] that this conjecture is true for abelian

groups.

Theorem 2.3.5 [65] A Cayley graph Γ = Cay(G, S) of an abelian group

G with at least three vertices contains a Hamiltonian cycle.

In 1989 Brian Alspach and Cun–Quan Zhang proved that every cubic

Cayley graph of a dihedral group is Hamiltonian [2].

A rare positive result for all finite groups was obtained in 2009 by Pak

and Radoic̆ić [68].

Theorem 2.3.6 [68] Every finite group G of size |G| � 3 has a generating

set S of size |S| � log2 |G| such that the corresponding Cayley graph Γ =

Cay(G, S) has a Hamiltonian cycle.

This theorem shows that every finite group G has a Hamiltonian Cayley

graph with a generating set of small size. The bound on S is reached on

the group G = Z
n
2 for which the size of its smallest generating set is equal

to log2 |G|. For other groups the size of a generating set is much smaller.

For example, for all finite simple groups it is equal to two. This result can

be also considered as a corollary of the following natural conjecture.

Conjecture 2.3.7 [68] There exists ε > 0, such that for every finite group

G and every k � ε log2 |G|, the probability P (G, k) that the Cayley graph

Γ = Cay(G, S) with a random generating set S of size k contains a Hamil-

tonian cycle, satisfies P (G, k) → 1 as |G| → ∞.

On one hand, this conjecture is much weaker then the Lovász conjecture.

On the other hand, it also does not contradict the Babai conjecture. A

work by Michael Krivelevich and Benny Sudakov [57] shows that for every

ε > 0 a Cayley graph Γ = Cay(G, S) with large enough |G|, formed by

choosing a set S of ε(log2 |G|)5 random generators in a group G, is almost

surely Hamiltonian. Thus, they reduce the bound in Conjecture 2.3.7 down

to k � ε(log2 |G|)5.
We present the proof of Theorem 2.3.6 in the next Section.
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2.4 Hamiltonicity of Cayley graphs on finite groups

Let G be a finite group of order n and H ⊂ G be a subgroup of G. Then

for g ∈ G the sets gH = {gh | h ∈ H} and Hg = {hg | h ∈ H} are left

and right cosets of H in G. A subgroup H of a group G is called a normal

subgroup (H �G) if the sets of left and right cosets of this subgroup in G

coincide, i.e. gH = Hg for any g ∈ G. A simple group is a nontrivial group

whose only normal subgroups are the trivial group and the group itself.

A factor group G/H of a group G with a normal subgroup H is called

the set of all cosets of H such that (aH)(bH) = (ab)H. A composition

series of a group G is a subnormal series such that

e = H0 �H1 � . . .�Hn = G,

with strict inclusions, where Hi is a maximal normal subgroup of Hi+1 for

all 0 � i � n. Equivalently, a composition series is a subnormal series such

that each factor group Hi+1/Hi is simple. The factor groups are called

composition factors.

We need the following simple “reduction lemma”.

Lemma 2.4.1 Let G be a finite group and let H�G be a normal subgroup.

Suppose S = S1 ∪ S2 is a generating set of G such that S1 ⊂ H generate

H, and projection S ′
2 of S2 onto G/H generates G/H. Suppose both Γ1 =

Cay(H, S1) and Γ2 = Cay(G/H, S ′
2) contain Hamiltonian paths. Then

Γ = Cay(G, S) also contains a Hamiltonian path.

Proof. Let Γ = Cay(G, S) be a Cayley graph which contains a Hamil-

tonian path. By vertex–transitivity of Γ one can arrange this path to start

at any vertex g ∈ G.

Let k = |G/H| and let g1 = e ∈ G. Consider a Hamiltonian path in the

Cayley graph Γ2 = Cay(G/H, S ′
2) :

H → Hg1 → Hg2 → Hg3 → . . . → Hgk.

Now proceed by induction in a manner similar to that in the proof of

Theorem 2.2.1. Fix a Hamiltonian path in the cosetHg1 so that e ∈ G is its

starting point. Suppose h1g1 is its endpoint. Add an edge {h1g1, h1g2} ∈ Γ

and consider a Hamiltonian path in the cosetHg2 starting at h1g2. Suppose
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h2g2 is its endpoint. Repeat until the resulting path ends at hkgk. This

complete the construction and proves the Lemma. �

Let l(G) be the number of composition factors of G. Denote r(G) and

m(G) the number of abelian and non–abelian composition factors, respec-

tively. Clearly, l(G) = r(G) +m(G).

Theorem 2.4.2 Let G be a finite group and r(G), m(G) be as above. Then

there exists a generating set S of G with |S| � r(G)+2m(G) such that the

corresponding Cayley graph Γ = Cay(G, S) contains a Hamiltonian path.

Proof. It is a well known corollary from the classification of finite sim-

ple group, that every non–abelian finite simple group can be generated by

two elements, one of which is an involution. So, Theorem 2.2.2 is applica-

ble, and every non–abelian finite simple group produces a generating set

S, |S| = 2, such that the corresponding Cayley graph contains a Hamilto-

nian cycle. If the group G is cyclic, a single generators suffices, of course.

Now we use Lemma 2.4.1. Observe that in notation Lemma 2.4.1, any

generating set S ′
2 of G/H can be lifted to S2 ⊂ G, so that S = S1 ∪ S2 is a

generating set of G. Therefore, if H and G/H have generating sets of size

k1 and k2, respectively, so that the corresponding Cayley graphs contain

Hamiltonian paths, then G contains such a generating set of size k1 + k2.

Now fix any composition series of a finite group G. By Lemma 2.4.1,

we can construct a generating set of size r(G) + 2m(G), so that the cor-

responding Cayley graph Γ = Cay(G, S) has a Hamiltonian path. This

completes the proof of Theorem. �

Now we are ready to prove Theorem 2.3.6.

Proof of Theorem 2.3.6

Proof. We deduce it from Theorem 2.4.2. Fix a composition series of

G. Let r = r(G) and m = m(G). Denote by K1, . . . , Kr and L1, . . . , Lm

the abelian and non–abelian composition factors of G, respectively. Since

the smallest simple non–abelian group A5 has order 60, then |Lj| � 60 > 4

for any j ∈ {1, . . . , m}. We have:

2r+2m = 2r · 4m �

r∏
i=1

|Ki| ·
m∏
j=1

|Li| = |G|.
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Therefore, r(G) + 2m(G) � log2|G|, with the equality attained only for

G ∼= Z
n
2 . In the latter case, when n � 2, an elementary inductive argument

(or a Gray code (see Section 2.1)) gives a Hamiltonian cycle. In other

cases, one can add to a generating set, one extra element, which connects

the endpoints of a Hamiltonian path. This gives the desired Hamiltonian

cycle and completes the proof. �

2.5 Hamiltonicity of Cayley graphs on the symmetric

group

Some results for Cayley graphs on the symmetric group Symn generated

by transpositions are known. These graphs have been proposed as mod-

els for the design and analysis of interconnection networks (see [39, 59]).

Moreover, Hamiltonian paths in Cayley graphs on Symn provide an algo-

rithm for creating the elements of Symn from a particular generating set.

The following result was proved by Vladimir Kompel’makher and Vladimir

Liskovets [48] in 1975.

Theorem 2.5.1 [48] The graph Cay(Symn, S) is Hamiltonian whenever

S is a generating set for Symn consisting of transpositions.

This result was generalized by Tchuente [78] in 1982 as follows.

Theorem 2.5.2 [78] Let S be a generating set of transpositions for Symn.

Then there is a Hamiltonian path in the graph Cay(Symn, S) joining any

permutations of opposite parity.

Thus, by these statements Cayley graphs on the symmetric group Symn,

generated by any sets of transpositions, are Hamiltonian. Independently,

a number of results were shown for particular sets of generators based on

transpositions. In 1991 it was shown by J.–S. Jwo et al. [42] that the

Star graph Symn(st) is Hamiltonian, and by Jwo [41] that the Bubble–

sort graph Symn(t) is Hamiltonian. Hamiltonian properties of a Cayley

graph generated by transpositions (l2), (l · · ·n), (n · · · l) were considered in

1993 by R. C. Compton and S. G. Williamson [24]. They defined a doubly

adjacent Gray code for the symmetric group Symn, gave a procedure for
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constructing such a Gray code and showed that this code correspond to a

Hamiltonian cycle in the corresponding Cayley graph for n � 3.

Hamiltonicity of the Pancake graph Pn has been investigated indepen-

dently by Shmuel Zaks [81] in 1984, by Jwo [41] in 1991, by Arkady

Kanevsky and Chao Feng [43] in 1995, by Jyh–Jian Sheu et al. [76] in

1999. As for a work of Zaks, he didn’t consider the Pancake graph but

he presented a new algorithm for generating permutations which exactly

gives a Hamiltonian cycle in this graph.

Theorem 2.5.3 The Pancake graph Pn is Hamiltonian for any n � 3.

In the next section we present two algorithms to generate a Hamiltonian

cycle in the Pancake graph.

2.6 Hamiltonicity of the Pancake graph

Let us recall that the Pancake graph Pn, n � 2, is the Cayley graph on

the symmetric group Symn of permutations π = [π1 π2 . . . πn], where πi =

π(i), 1 � i � n, with the generating set PR = {ri ∈ Symn : 2 � i � n} of

all prefix–reversals ri reversing the order of any substring [1, i], 2 � i � n,

of a permutation π when multiplied on the right, i.e.

[π1 . . . πi πi+1 . . . πn] ri = [πi . . . π1 πi+1 . . . πn].

It is a connected vertex–transitive (n− 1)–regular graph of order n!.

Moreover, the Pancake graph Pn, n � 3, has a hierarchical structure

such that for any n � 3 it consists of n copies Pn−1(i), 1 � i � n, where

the vertex set is presented by all permutations with a fixed element at the

last position:

V i = {[π1 . . . πn−1i], where πk ∈ {1, . . . , n}\{i} : 1 � k � n− 1},

where |V i| = (n− 1)!, and the edge set is presented by the set:

Ei = {{[π1 . . . πn−1 i], [π1 . . . πn−1 i] rj} : 2 � j � n− 1},

where |Ei| = (n−1)!(n−2)
2

.



2.6. HAMILTONICITY OF THE PANCAKE GRAPH 33

[4321][1234]

[2134] [3421]

[2341][3214]

[4231]

[2431]

[3241]

[1324]

[2314]

[3142] [2413]

[1423]

[4123]

[2143]

[1243]

[4213]

[4312]

[3412]

[1342]

[4132]

[1432]

[3124]

[123]

[213]

[312]

[132]

[231]

[321]

P3

P4

r2r3

r4

r2

r3

r4

r2

r3

r4

r2

r3

r4

r2 r3

r4

r2

r3

r4

r2 r3

r4

r3 r2

r4

r3
r2

r2r3

r4

r2

r3
r2

r3

r2

r3

r2r3

r2

r3

P1

P2

[12] [21]

[1]

r2

r4

Figure 11. The hierarchical structure of P2, P3 and P4.

There are (n − 2)! external edges between any two copies Pn−1(i) and

Pn−1(j), i �= j, presented as {[i π2 . . . πn−1 j], [j πn−1 . . . π2, i]}, where

[i π2 . . . πn−1 j] rn = [j πn−1 . . . π2 i].

As one can see, these edges are defined by the prefix–reversal rn. Prefix–

reversals rj, 2 � j � n − 1, define internal edges in all n copies Pn−1(i),

1 � i � n. Copies Pn−1(i), or just Pn−1 when it is not important to specify

the last element of permutations belonging to the copy, are also called

(n− 1)–copies. Figure 11 shows the hierarchical structure of P2, P3, P4.

2.6.1 Hamiltonicity based on hierarchical structure

We shall construct a Hamiltonian cycle in the Pancake graph by induction

on the size k of the graph Pk, k � 3, with respect to the proof given in [76].

A similar approach was also used in [43].
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When k = 3 then Pk
∼= C6, hence it is Hamiltonian with the following

cycle representaion:

[123]
r2→ [213]

r3→ [312]
r2→ [132]

r3→ [231]
r2→ [321]

r3→ [123].

It is obvious that by removing one edge from this cycle we get a Hamilto-

nian path.

Now we suppose that we have a Hamiltonian cycle for k = n − 1. Let

us show that this is also true for k = n.

We construct a Hamiltonian cycle Hn by using the hierarchical structure

of the graph. Since Pn is a vertex–transitive then without loss of generality

one can start with a vertex π1 = In = [12 . . . (n− 1)n] ∈ Pn−1(n).

By inductive assumption there is a Hamiltonian cycle Hn
n−1 in a copy

Pn−1(n). We remove an edge {[12 . . . (n−1)n], [(n−1) . . .21n]} from Hn
n−1

and denote a Hamiltonian path as Ln
n−1, where n represents a corresponding

(n−1)–copy. A vertex π2 = [(n−1) . . .21n] in a copy Pn−1(n) is connected

to a vertex π3 = [n 12 . . . (n − 2) (n − 1)] by an external edge. Moreover,

by our inductive assumption there exists a Hamiltonian cycle in a copy

Pn−1(n − 1). Then we remove an edge {[n 12 . . . (n − 2) (n − 1)], [(n −
2) . . . 1n (n − 1)]} from this Hamiltonian cycle and obtain a Hamiltonian

path Ln−1
n−1. Again, a vertex π4 = [(n − 2) . . . 1n (n − 1)] is connected by

an external edge to a vertex π5 = [(n− 1)n 1 . . . (n− 3) (n− 2)] of a copy

Pn−1(n− 2) which also has, by inductive assumption, a Hamiltonian cycle.

Constructing a Hamiltonian path in this manner for all copies Pn−1(j),

1 � j � n − 2, finally we have paths Ln−2
n−1, . . . , L

1
n−1 that are connected

to each other in sequence by an external edge. The last path L1
n−1 ends a

vertex π2n = [n (n−1) . . .21], connected with a vertex π1 of a copy Pn−1(n).

Let us note that we started our construction with this copy.

Thus, by combining all these paths Ln
n−1, L

n−1
n−1, . . . , L

1
n−1 with all exter-

nal edges between them, finally we obtain a Hamiltonian cycle Hn. This

completes a construction.

Figure 12 shows the way to construct a Hamiltonian cycle by the con-

struction above.
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Figure 12. A Hamiltonian cycle of the Pancake graph

A different way to construct a Hamiltonian cycle was considered by

Zaks [81] when he generated the permutation in some special order. In his

algorithm each successive permutation is generated by reversing a suffix of

the preceding permutation. From symmetrical point of view, it is the same

as consider a prefix of a permutation that is used in the Pancake graph.

2.6.2 The generating algorithm by Zaks

We start with the identity permutation In = [12 . . . n] and in each step

reverse a certain suffix. The sequence of sizes of these suffixes is denoted

by ζn and is defined by recursively as follows (a sequence is written as a

concatenation of its elements):

ζ2 = 2

ζn = (ζn−1 n)
n−1 ζn−1, n > 2.

For example, if n = 2 then ζ2 = 2 and we have:

[12] [21]
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If n = 3 then ζ3 = 23232 and we have:

[123] [231] [312]

[132] [213] [321]

If n = 4 then ζ4 = 23232423232423232423232 and we have:

[1234] [2341] [3412] [4123]

[1243] [2314] [3421] [4132]

[1342] [2413] [3124] [4231]

[1324] [2431] [3142] [4213]

[1423] [2134] [3241] [4312]

[1432] [2143] [3214] [4321]

We prove validity of this generating algorithm by induction on n that,

starting with the permutation [12 . . . n] and applying the sequence ζn of suf-

fix reversals, we generate all n! permutations ending with the permutation

[nn− 1 . . . 1].

The assertion holds for n = 2. Assuming it holds for n−1, we prove it for

n: ζn starts with ζn−1. Hence, starting with [12 . . . n] we first generate the

(n− 1)! permutations that start with 1 and, by the induction assumption,

the last one is [1nn − 1 . . . 2]. The next element in ζn is n, hence the

next permutation generated is [23 . . . n 1]. The following elements thus

generated are all permutations starting with 2. Continuing in this manner,

we then generate the permutations starting with 3 . . . n.

Moreover, because the first permutation starting with 2 ([23 . . . n 1]) is

obtained from the first permutation starting with 1 ([12 . . . n]) by increasing

each element by 1 (while n becomes 1), and because both the permutations

starting with 1 and whose starting with 2 are generated by the sequence

ζn−1, therefore the last permutation starting with 2 is derived from [1nn−
1 . . . 2] (the last permutation starting with 1) in the same manner, namely,

it is [21n . . .3]. Continuing in this manner it is easy to show that the first

permutation starting with i, 1 < i � n, is [i i + 1 . . . n 12 . . . i − 1] and the

last one is [i i− 1 . . . 1nn− 1 . . . i+ 1] (it is [nn− 1 . . . 1] for i = n). The

proof is thus complete. �
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2.7 Other cycles of the Pancake graph

It is also known that the Pancake graph Pn, n � 3, contains many other

cycles. In 1995 it was shown by Arkady Kanevsky and Chao Feng [43] that

all cycles of length l, where 6 � l � n! − 2 and l = n! can be embedded

in the Pancake graph Pn, n � 3. In 1999 it was shown by Jyh–Jian Sheu

etc. [76] that a cycle of length l = n! − 1 can be also embedded in the

Pancake graph Pn, n � 3. So, finally the following result takes place.

Theorem 2.7.1 [43, 76] All cycles of length l, where 6 � l � n!, can be

embedded in the Pancake graph Pn, n � 3, but there are no cycles of length

3, 4, or 5.

An explicit description of cycles is gradually being developed. The first

results concerning cycle characterization in the Pancake graph were ob-

tained in [53] where the following cycle representation via a product of

generating elements was used.

A sequence of prefix–reversals Cl = ri0 . . . ril−1
, where 2 � ij � n, and

ij �= ij+1 for any 0 � j � l−1, such that πri0 . . . ril−1
= π, where π ∈ Symn,

is called a form of a cycle Cl of length l. A cycle Cl of length l is also

called an l–cycle, and a vertex of Pn is identified with the permutation

which corresponds to this vertex. It is evident that any l–cycle can be

presented by 2l forms (not necessarily different) with respect to a vertex

and a direction. The canonical form Cl of an l–cycle is called a form with

a lexicographically maximal sequence of indices i0 . . . il−1. Two cycles in a

graph are independent if they do not have any vertex in common.

In this Section we present results on the full characterization of cycles

of length 6, 7 and 8 in the Pancake graph. The proof for 9–cycles one could

be found in [54].

The main results of this Section are presented by the following theorems.

Theorem 2.7.2 [53] The Pancake graph Pn, n � 3, has n!
6
independent

6–cycles of the canonical form

C6 = r3 r2 r3 r2 r3 r2. (2.2)

Moreover, each of the vertices of Pn belongs to exactly one 6–cycle.
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Theorem 2.7.3 [53] The Pancake graph Pn, n � 4, has n! (n−3) distinct

7–cycles of the canonical form

C7 = rk rk−1 rk rk−1 rk−2 rk r2, (2.3)

where 4 � k � n. Moreover, each of the vertices of Pn belongs to 7 (n− 3)

distinct 7–cycles and there are n!
8
� n7 �

n!
7
independent 7–cycles.

As one can see, the descriptions of 6–cycles and 7–cycles are not so

complicated. However, the situation is changed dramatically for 8–cycles.

Theorem 2.7.4 [55] Each of vertices of the Pancake graph Pn, n � 4,

belongs to N8 distinct 8–cycles of the following canonical forms:

C1
8 = rk rj ri rj rk rk−j+i ri rk−j+i, 2 � i < j � k− 1, 4 � k � n, (2.4)

C2
8 = rk rk−1 r2 rk−1 rk r2 r3 r2, 4 � k � n, (2.5)

C3
8 = rk rk−i rk−1 ri rk rk−i rk−1 ri, 2 � i � k − 2, 4 � k � n, (2.6)

C4
8 = rk rk−i+1 rk ri rk rk−i rk−1 ri−1, 3 � i � k−2, 5 � k � n, (2.7)

C5
8 = rk rk−1 ri−1 rk rk−i+1 rk−i rk ri, 3 � i � k−2, 5 � k � n, (2.8)

C6
8 = rk rk−1 rk rk−i rk−i−1 rk ri ri+1, 2 � i � k−3, 5 � k � n, (2.9)

C7
8 = rk rk−j+1 rk ri rk rk−j+1 rk ri, 2 � i < j � k− 1, 4 � k � n, (2.10)

C8
8 = r4 r3 r4 r3 r4 r3 r4 r3, (2.11)

where N8 =
n3+12n2−103n+176

2 . Moreover, there are n!N8

8 distinct 8–cycles and

a maximal set of independent 8–cycles will contain n!
8 of these.

Proofs of these results are based on the hierarchical structure of the

Pancake graph. We also need some new definitions and notations.

A segment [πi . . . πj] of a permutation π = [π1 . . . πi . . . πj . . . πn] consists

of all elements that lie between πi and πj inclusive. Any permutation

can be written as a sequence of singleton and multiple segments. We use

characters from {i, j, k} to denote singletons and characters from {α, β, γ}
to denote multiple segments. For example, π = [i π2 π3 π4 j π6 π7 π8 k] can

be presented as π = [i α j β k] where α = [π2 π3 π4], β = [π6 π7 π8]. If α is
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the inversion of a segment α then α = α. Let us denote the number of

elements in a segment α as |α|. We also put π = π rn and τ = τ rn. Note

we observe empty segments where it does not contradict initial definitions.

Lemma 2.7.5 [53] Let two distinct permutations π and τ belong to the

same (n − 1)–copy of Pn, n � 3, and let d(π, τ) � 2, then π, τ belong to

distinct (n− 1)–copies of the graph.

Proof. Let π, τ ∈ Pn−1(i), 1 � i � n. If d(π, τ) = 1 and if we put

π = [j α k β i] then τ = [k α j β i] where j �= k �= i. So, π = [i β k α j], τ =

[i β j α k], which means that π, τ belong to the distinct copies Pn−1(j) and

Pn−1(k). If d(π, τ) = 2 then there is a permutation ω in Pn−1(i) adjacent

to π and τ . Permutations π and τ are obtained from ω by multiplying on

different (not equal to rn) prefix–reversals on the right. Thereby, the first

elements of π and τ should be different hence π = π rn and τ = τ rn should

be different, i.e. they belong to the distinct (n− 1)–copies of Pn. �

2.7.1 6–cycles of the Pancake graph

In this section we present the proof of Theorem 2.7.2.

Proof. If n = 3 then P3
∼= C6 and there is the only 6–cycle presented as

[123]
r2→ [213]

r3→ [312]
r2→ [132]

r3→ [231]
r2→ [321]

r3→ [123]

for which the canonical form is C6 = r3 r2 r3 r2 r3 r2.

Let us show that there are no other forms of 6–cycles in Pn, n � 4.

First of all, we prove that an 6–cycle doesn’t appear on vertices of two

distinct (n − 1)–copies. Indeed, if π, τ ∈ Pn−1(i) and π, τ ∈ Pn−1(j)

then d(π, τ) �= 1 and d(π, τ) �= 2 by Lemma 2.7.5, and hence d(π, τ) �

3. Suppose that there is an 6–cycle containing vertices π, τ, π, τ . So, if

d(π, τ) = 3 then π, τ are adjacent in Pn−1(j) and by Lemma 2.7.5 vertices

π = π rn, τ = τ rn belong to the distinct (n− 1)–copies but this is not true

since π, τ ∈ Pn−1(i). If d(π, τ) = 4 then π = τ but this is not possible

since π �= τ . Thus, an 6–cycle doesn’t appear on vertices of two distinct

(n− 1)–copies.

Now let us show that an 6–cycle doesn’t appear on vertices of three

distinct (n − 1)–copies. Let π, τ ∈ Pn−1(i) such that d(π, τ) � 2 then
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by Lemma 2.7.5 vertices π, τ belong to the distinct (n − 1)–copies. We

consider two cases.

Case 1. If d(π, τ) = 1 then vertices π, τ, π, τ might be belong to an 6–

cycle if and only if d(π, τ) = 3. Show that this is not true. Let π = [j α k β i]

then τ = [k α j β i] and π = [i β k α j] ∈ Pn−1(j), τ = [i β j α k] ∈ Pn−1(k).

The shortest path starting at π and belonging to Pn−1(k) should contain

vertices ω = [k β i α j] and ω = [j α i β k] ∈ Pn−1(k), i.e. d(π, ω) = 2.

It is evident that there is no a prefix–reversal transforming ω into τ , i.e.

d(ω, τ) �= 1, and hence d(π, τ) �= 3.

Case 2. If d(π, τ) = 2 then vertices π, τ, π, τ might be belong to an

6–cycle if and only if d(π, τ) = 2. However this is not possible since

by Lemma 2.7.5 vertices π = π rn and τ = τ rn belong to the distinct

(n−1)–copies. Thus, an 6–cycle doesn’t appear on vertices of three distinct

(n− 1)–copies.

It is also evident that an 6–cycle doesn’t appear on vertices of four and

more distinct (n − 1)–copies since there should be at least four external

edges and at least one edge in each of (n−1)–copies, so we have an 8–cycle.

Thus, there is the only canonical form, namely r3 r2 r3 r2 r3 r2, to describe

6–cycles in Pn, n � 3. These cycles are independent for n � 4 since prefix–

reversals ri, 4 � i � n, define external edges for 6–cycles, which means

that each of the vertices of Pn belongs to the only 6–cycle. �

2.7.2 7–cycles of the Pancake graph

Proof. We prove Theorem 2.7.3 by the induction on the dimension k of the

Pancake graph Pk when k � 4.

If k = 3 then there are no 7–cycles in P3
∼= C6.

If k = 4 then theorem says that each of vertices of P4 belongs to 7

distinct 7–cycles. Since Pn is a vertex–transitive graph then it is enough

to check this fact for any its vertex. In particular, all 7–cycles containing

the identity permutation I = [1234] are presented in the Table 1. They

could be found easily by considering vertex distributions of P4 in all met-

ric spheres centered at the identity permutation. The canonical form for

all cycles presented in Table 1 is C7 = r4 r3 r4 r3 r2 r4 r2 that corresponds

to (2.3) when k = 4.
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vertex description prefix–reversal description

1 [1234]-[4321]-[2341]-[1432]-[3412]-[4312]-[2134] r4 r3 r4 r3 r2 r4 r2
2 [1234]-[3214]-[4123]-[2143]-[1243]-[3421]-[4321] r3 r4 r3 r2 r4 r2 r4
3 [1234]-[4321]-[2341]-[3241]-[1423]-[4123]-[3214] r4 r3 r2 r4 r2 r4 r3
4 [1234]-[3214]-[2314]-[4132]-[1432]-[2341]-[4321] r3 r2 r4 r2 r4 r3 r4
5 [1234]-[2134]-[4312]-[3412]-[2143]-[4123]-[3214] r2 r4 r2 r4 r3 r4 r3
6 [1234]-[4321]-[3421]-[1243]-[4213]-[3124]-[2134] r4 r2 r4 r3 r4 r3 r2
7 [1234]-[2134]-[4312]-[1342]-[2431]-[3421]-[4321] r2 r4 r3 r4 r3 r2 r4

Table 1. 7–cycles in P4 containing the identity permutation I = [1234].

Now we assume that theorem is hold for k = n− 1 and prove that it is

hold also for k = n using the hierarchical structure of Pn.

By the induction assumption, any vertex of any (n−1)–copy belongs to

7((n− 1)− 3) = 7(n− 4) distinct 7–cycles of this copy. However, besides

7–cycles belonging to the same (n − 1)–copy there may also be 7–cycles

belonging to the distinct (n− 1)–copies of the graph. The following three

cases are possible.

Case 1. Suppose that such an 7–cycle C∗
7 is formed on vertices from

two copies Pn−1(i) and Pn−1(j), 1 � i �= j � n, such that either two

vertices of C∗
7 belong to Pn−1(i) and other five vertices belong to Pn−1(j),

or three vertices of C∗
7 belong to Pn−1(i) and other four vertices belong to

a copy Pn−1(j). In the both cases we have d(π, τ) � 2 for any vertices

π, τ ∈ Pn−1(i) belonging to C∗
7 . Then by Lemma 2.7.5 vertices π, τ belong

to the distinct (n−1)–copies that contradicts to our assumption. Therefore,

an 7–cycle does not occur in this case.

Case 2. Suppose that such an 7–cycle C∗
7 is formed on vertices from three

distinct (n−1)–copies such that two vertices πi1, πi2 belong to Pn−1(i), two

vertices πj1 , πj2 belong to Pn−1(j), the other three vertices πn1, πn2, πn3

belong to Pn−1(n), where 1 � i < j � n (see Figure 13).

Let us describe such a cycle. Since Pn is a vertex–transitive graph

then there is no loss of generality in taking πn2 = In = [α iβ j γ n], where

α = [1 . . . i − 1], β = [i+ 1 . . . j − 1], γ = [j + 1 . . . n− 1] and |α| = i − 1,

|β| = j − i− 1, |γ| = n− j − 1. By Lemma 2.7.5 vertices πn1 and πn3 are

adjacent to vertices from distinct (n− 1)–copies Pn−1(i) and Pn−1(j),
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Figure 13. Case 2 for the proof of Theorem 2.7.3

hence these vertices are presented by permutations:

πn1 = πn2 ri = [i α β j γ n], where πn1

j = j,

πn3 = πn2 rj = [j β i α γ n], where πn3

j−i+1 = i,

and their adjacent vertices in Pn−1(i) and Pn−1(j) are presented by the

following permutations:

πi1 = πn1 rn = [n γ j β α i], where πi1
n−j+1 = j,

πj1 = πn3 rn = [n γ α i β j], where πj1
n−j+i = i.

A vertex πi2 should be adjacent to the vertex πi1 and to one of the vertices,

say πj2 , from Pn−1(j). So we have:

πi2 = πi1 rn−j+1 = [j γ nβ α i], where πi2
1 = j.

On the other hand, a vertex πj2 should be adjacent to the vertex πj1.

Moreover, since it is also adjacent to πi2 hence πj2 has the following form:

πj2 = πj1 rn−j+i = [i α γ n β j], where πj2
1 = i.

By our assumption, the vertices πi2 and πj2 are incident to the same exter-

nal edge, which means that a permutation π∗ = πi2 rn = [i α β n γ j] should
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coincide with the permutation πj2. This is possible only in the case when

segments β and γ are empty, i.e. |β| = j−i−1 = 0 and |γ| = n−j−1 = 0.

From this we have j = n − 1 and i = j − 1 = n − 2, and an 7–cycle is

presented as follows:

πi1 r2→ πi2 rn→ πj2 rn−1−→ πj1 rn→ πn3
rn−1−→ πn2

rn−2−→ πn1
rn→ πi1.

It is evident that its canonical form C7 = rn rn−1 rn rn−1 rn−2 rn r2 coincides

with (2.3) when k = n.

Case 3. Suppose that such an 7–cycle is formed on vertices from four or

more (n−1)–copies. It follows from the hierarchical structure of the graph

that any its vertex is incident to the only external edge. So, any 7–cycle

in this graph should contain at least two vertices of the same (n− 1)–copy

and hence an 7–cycle does not occur in this assumption.

Thus, the only canonical form rn rn−1 rn rn−1 rn−2 rn r2 representing seven

cycles of the length 7 and containing vertices from three distinct (n− 1)–

copies of the graph Pn is found. By vertex–transitivity this is true for any

vertex of Pn . By the induction assumption, any vertex of any (n−1)–copy

belongs to 7(n− 4) distinct 7–cycles from this copy. Therefore, any vertex

of Pn belongs to 7(n− 3) distinct 7–cycles of the canonical form (2.3) that

completes the proof on the main fact of Theorem 2.7.3.

Since each of vertices belongs to 7 (n−3) distinct 7–cycles and there are

n! vertices in Pn, hence there are n! 7 (n− 3) cycles of length 7. However,

each cycle was enumerated seven times, so in total there are n! (n − 3)

distinct 7–cycles in Pn.

It is also easy to show that there are at most three independent 7–cycles

in P4. For example, the following three 7–cycles are independent in P4:

C1
7 = [1234]− [2134]− [4312]− [1342]− [2431]− [3421]− [4321],

C2
7 = [3241]− [2341]− [1432]− [3412]− [2143]− [4123]− [1423],

C3
7 = [4213]− [2413]− [3142]− [4132]− [2314]− [1324]− [3124].

It follows from the hierarchical structure of Pn, n � 4, that there are
n!
24

copies of P4 and each of them has exactly three independent 7–cycles.

So, in total there are at least n!
8 independent 7–cycles that gives the lower

bound. The upper bound is obtained in assumption that each of vertices

of Pn, n � 7, belongs to the only 7–cycle. �
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2.7.3 8–cycles of the Pancake graph

In this section we present the proof of Theorem 2.7.4. For this we need some

additional notations and technical lemmas. As before, we suggest that

any permutation can be written as a sequence of singleton and multiple

segments presented by characters from {p, q, s, t} and {α, β, γ, A,B, C}
respectively. If π = [αβ], where α = [π1 π2 . . . πi] and β = [πi+1 . . . πn],

then π r|α| = [αβ], where |α| is the number of elements in a segment α,

|α| � 2, and α is the inversion of a segment α. It is obvious that α = α.

Note that we allow empty segments where this does not contradict the

initial definitions.

An independent set D of vertices in a graph is called an efficient domi-

nating set [26] if each vertex not inD is adjacent to exactly one vertex inD.

It was shown in [70] that Dp = {[p π2 . . . πn] : πj ∈ {1, . . . , n}\{p}, 2 � j �

n}, |Dp| = (n−1)! , p = 1, . . . , n, are efficient dominating sets in Pn, n � 3.

Let us note that external edges of Pn, n � 3, are incident to vertices

from different efficient dominating sets of the Pancake graph. The dis-

tance d = d(π, τ) between two vertices π, τ ∈ V (Pn) is defined as the least

number of prefix–reversals transforming π into τ , i.e. πri1ri2 . . . rid = τ .

The next lemma gives a full list of paths of length three between vertices

of the same efficient dominating set.

Lemma 2.7.6 Two permutations π, τ ∈ Dp, 1 � p � n, are at distance

three from each other in Pn, n � 3, if and only if:

1) either τ = π rj ri rj, where 2 � i < j � n, and permutations π, τ are

presented as:

π = [AB γ], τ = [AB γ]; (2.12)

2) or τ = π rj ri ri−j+1, where 2 � j < i � n, and permutations π, τ are

presented as:

π = [pAB γ], τ = [pB Aγ]. (2.13)

Proof. We consider π ∈ Dp such that π = [p α q β k], πj = q. Let us find

other vertices from Dp being at distance three from π. Let π1 = π rj =

[q α p β k], where π1
j = p, 2 � j � n. An application of a prefix–reversal

ri, 2 � i � n, i �= j, to the permutation π1 gives us the following two cases.
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1) If i < j then π2 = π1 ri = [α2 q α1 p β k], where π2
j = p, α = α1 α2 and

|α2| = i− 1, and an application of a prefix–reversal rj to the permutation

π2 gives us the permutation:

τ = π2 rj = [p α1 q α2 β k],

hence τ = π rj ri rj, and we get (2.12) by setting A = p α1, B = α2 q,

γ = β k in π and τ in this case. Note, that using rj is the only way to

restore p to the first position and thus to end at an element of Dp after

reaching π2.

2) If i > j then π2 = π1 ri = [β1 p α q β2 k], where π2
i−j+1 = p, β = β1β2

and |β1| = i − j, and an application of a prefix–reversal ri−j+1 to the

permutation π2 gives us the permutation:

τ = π2 ri−j+1 = [p β1 α q β2 k],

hence τ = π rj ri ri−j+1, and we get (2.13) setting A = α q, B = β1, γ = β2 k

in π and τ in this case. Note, that using rj is the only way to restore p to

the first position and thus to end at an element of Dp after reaching π2. �

The next lemma gives a description of paths of length three defined on

internal edges of the graph between vertices of given forms.

Lemma 2.7.7 Let permutations π and τ be presented as:

1) π = [γ1ABγ2] and τ = [γ1ABγ2]. Then:

a) there exists a unique path of length three:

τ = πr|γ1|+|A|r|A|r|γ1|+|A|, (2.14)

provided that either |γ1| � 2 and |A| � 2, or |γ1| = 1 and |A| � 3;

b) there are two paths of length three:

τ = πr2r3r2, τ = πr3r2r3, (2.15)

provided that |γ1| = 1 and |A| = 2;
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2) π = [γ1ABγ2] and τ = [γ1BAγ2], where |γ1| � 0, |A| � 1, |B| � 1.

Then:

a) there is a unique path of length three:

τ = πr|γ1|+2r2r|γ1|+2, (2.16)

provided that |γ1| � 2, and |A| = |B| = 1;

b) there is a unique path of length three:

τ = πr|γ1|+|A|r|γ1|+|A|+|B|r|γ1|+|B|, (2.17)

provided that |γ1| = 1, and at least one of |A|, |B| �= 1;

c) there are two paths of length three:

τ = πr2r3r2 = πr3r2r3, (2.18)

provided that |γ1| = |A| = |B| = 1;

d) there is a unique path of length three:

τ = πr|A|r|A|+|B|r|B|, (2.19)

provided that |γ1| = 0 and |A| � 2, |B| � 2.

There are no other paths of length three between π and τ of these types.

Proof. 1) If π = [γ1ABγ2] and τ = [γ1ABγ2], then (2.14) is checked by

a direct verification:

[γ1ABγ2]
r|γ1|+|A|→ [Aγ1Bγ2]

r|A|→ [Aγ1Bγ2]
r|γ1|+|A|→ [γ1ABγ2].

Suppose that there is one more path of length three. Then these two paths

should form an 6–cycle. In part (a), either |γ1| � 2 and |A| � 2, or |γ1| = 1

and |A| � 3, so r|γ1|+|A| = rm for some m � 4, but by Theorem 2.7.2, no an

6–cycle includes rm with m � 4 in its form. Therefore, the given path is

the only one in this case. In part (b), |γ1| = 1 and |A| = 2, so m = 3 and
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the condition of Theorem 2.7.2 holds, hence we obtain two distinct paths

of the stated forms (2.15).

2) If π = [γ1ABγ2] and τ = [γ1BAγ2], and |γ1| � 2, |A| � 1, |B| � 1,

then there is the following path of length four between these vertices:

π = [γ1ABγ2]
r|γ1|+|A|→ [Aγ1Bγ2]

r|γ1|+|A|+|B|→ [Bγ1Aγ2]
r|γ1|+|B|→

[γ1BAγ2]
r|γ1|→ [γ1BAγ2] = τ. (2.20)

Suppose there is also a path of length three between π and τ . By The-

orem 2.7.1, there are no cycles of length 3 or 5, and hence no paths of

lengths 3 and 4 exist between two fixed vertices unless the paths are dis-

joint. This means that these two paths should form an 7–cycle, including

the sequence rm+arm+a+brm+brm, where |γ1| = m, |A| = a and |B| = b. By

Theorem 2.7.2, this is possible only in the case when m = k − 2, k � 4,

and a = b = 1, which implies that a unique path of length three has the

form rm+2r2rm+2 that corresponds to (2.16).

Putting |γ1| = 1 in (2.20), a path

τ = πr|γ1|+|A|r|γ1|+|A|+|B|r|γ1|+|B|,

corresponding to (2.17), is obtained. Taking |γ1| = m, |A| = a and |B| = b,

the obtained path is presented as rm+arm+a+brm+b. Suppose that there is

one more path of length three between π and τ . Then these two paths

should form an 6–cycle. By Theorem 2.7.2, this is possible only in the

case when m = a = b = 1, which gives us the paths τ = πr2r3r2 and

τ = πr3r2r3, corresponding to (2.18).

Putting |γ1| = 0 in (2.20), a path

τ = πr|A|r|A|+|B|r|B|,

corresponding to (2.19) with |A| � 2, |B| � 2, is obtained. Suppose there

is one more path of length three between π and τ . Then these two paths

should form an 6–cycle. By the conditions of Lemma, |A|+ |B| � 4, hence

r|A|+|B| = rm for some m � 4, but by Theorem 2.7.2, no an 6–cycle includes

rm with m � 4 in its form. Therefore, the given path is the only one in

this case. If |A| = 1 or |B| = 1, then the path above is transformed into a

2–path or an edge. This completes the proof of the lemma. �
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Now we are ready to prove Theorem 2.7.4

Proof of Theorem 2.7.4

Since P3
∼= C6 and due to the hierarchical structure, P4 has four copies

of P3, each of which obviously cannot contain 8–cycles. However, P4 has 8–

cycles consisting of paths within copies of P3 together with external edges

between these copies. In general, any 8–cycle of Pn, n � 4, must consist of

paths within subgraphs that are isomorphic to Pk−1 for some 4 � k � n,

joined by external edges between these subgraphs. Hence, all 8–cycles

of Pn, n � 4, could be found recursively by considering 8–cycles within

each Pk, 4 � k � n, consisting of vertices from some copies of Pk−1. This

approach is used in the proof of Theorem 2.7.4. It is assumed that any copy

of Pk−1 has at least two vertices, since each vertex has a unique external

edge. We obtain canonical forms of 8–cycles and count their numbers.

Case 1: an 8–cycle within Pk has vertices from two copies of Pk−1

Suppose that an 8–cycle is formed on vertices from copies Pk−1(p) and

Pk−1(s), 1 � p �= s � k. By Lemma 2.7.5, if two vertices π and τ , belonging

the same (k− 1)–copy, are at the distance at most two, then their external

neighbours π and τ should belong to distinct (k − 1)–copies. Hence, an

8–cycle cannot occur in situations when its two (three) vertices belong to

one copy and six (five) vertices belong to another one. Therefore, such an

8–cycle must have four vertices in each of the two copies.

(4 + 4)–situation. Suppose that four vertices πs1, πs2, πs3, πs4 of such an

8–cycle belong to a copy Pk−1(s), and other four vertices πp1, πp2, πp3, πp4

belong to a copy Pk−1(p). Herewith, vertices π
sl, l = 1, 2, 3, 4, should form

a path of length three whose endpoints πs1 and πs4 should be adjacent to

vertices from a copy Pk−1(p). This means that the equality πs1
1 = πs4

1 = p

should hold, and both vertices should belong to the efficient dominating

set Dp. So, one vertex of Pk−1(s), that is adjacent to a vertex of Pk−1(p),

must have the form [p α q β s].

Let πs1 = [p α q β s], where πs1
1 = p, πs1

j = q, |α| = j− 2, |β| = k− j− 1.

By Lemma 2.7.6, a path of length three between vertices is presented by

the following two ways.
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πs1 = [pαqβs]

πs2 = [qαpβs] [α2qα1pβs] = πs3

[pα1qα2βs] = πs4

πp1 = [sβqαp]

πp2 πp3

[sβα2qα1p] = πp4

rkrk

Pk−1(p)

Pk−1(s)

rj ri rj

case 1

πs1 = [pαqβs]

πs2 = [qαpβs] [β1pαqβ2s] = πs3

[pβ1αqβ2s] = πs4

πp1 = [sβqαp]

πp2 πp3

[sβ2qαβ1p] = πp4

rkrk

Pk−1(p)

Pk−1(s)

rj ri ri−j+1

case 2

Figure 14. (4 + 4)–situation

1) In the first way, a path of length three has the following form:

πs1 = [pαqβs]
rj→ πs2 = [qαpβs]

ri→ πs3 = [α2qα1pβs]
rj→ πs4 = [pα1qα2βs],

where πs2
j = p, πs3

i = q, α = α1α2 and |α2| = i − 1 � 1, πs4
j−i+1 = q. The

endpoints πs1, πs4 are adjacent to the following vertices:

πp1 = πs1rk = [sβqα2α1p]

with πp1
k−j+1 = q, and

πp4 = πs4rk = [sβα2qα1p]

with πp4
k−i+j = q (see Figure 14, Case 1).

Let us describe a path of length three between vertices πp1 and πp4

belonging to the same copy Pk−1(p). Denote γ1 = sβ, A = qα2, B = α1,

γ2 = p, where |γ1| = |β| + 1 � 1, |A| � 2, |B| � 0, then permutations

πp1, πp4 take the forms [γ1ABγ2] and [γ1ABγ2]. By Lemma 2.7.7 (case

1a), there is a unique path of length three between these permutations if

|γ1| = |β| + 1 = k − j � 1 and |A| = |α2| + 1 = i � 3, or k − j � 2

and i � 2, and by Lemma 2.7.7 (case 1b), there are two distinct paths if

k − j = 1 and i = 2.

Hence, such an 8–cycle takes the form C1
8 = rk−j+irirk−j+irkrjrirjrk,

where 2 � i < j � k−1, the canonical form of which corresponds to (2.4) in
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Theorem 2.7.4 for 4 � k � n. The case of k−j = 1 and i = 2 by symmetry

gives one additional form C2
8 = rk−1r2rk−1rkr2r3r2rk, the canonical form of

which corresponds to (2.5) in Theorem 2.7.4 for 4 � k � n.

2) In the second way, a path of length three has the following form:

πs1 = [pαqβs]
rj→ πs2 = [qαpβs]

ri→ πs3 = [β1pαqβ2s]
ri−j+1→ πs4 = [pβ1αqβ2s],

where πs2
j = p, πs3

i = q, β = β1β2, |β1| = i− j � 1, |β2| = k− i−1, πs4
i = q.

The endpoints πs1, πs4 are adjacent to the following vertices:

πp1 = πs1rk = [sβ2β1qαp],

with πp1
k−j+1 = q, and

πp4 = πs4rk = [sβ2qαβ1p],

with πp4
k−i+1 = q (see Figure 14, Case 2).

Let us describe paths of length three between πp1 and πp4 belonging to

the same copy Pk−1(p). Denote γ1 = sβ2, A = β1, B = qα, γ2 = p, where

|γ1| = |β2|+1 � 1, |A| = |β1| � 1, |B| = |α|+1 � 1, then πp1 = [γ1ABγ2],

πp4 = [γ1BAγ2]. By Lemma 2.7.7 (case 2a), there is a unique path of

length three between πp1 and πp4 if |γ1| = k− i � 2, |A| = |β1| = i− j = 1

and |B| = |α| + 1 = j − 1 = 1. Hence, j = 2, i = 3, and for k � 5

an 8–cycle has the form rk−1r2rk−1rkr2r3r2rk, corresponding again to the

canonical form (2.5).

By Lemma 2.7.7 (case 2b), there also exists a unique path of length three

between πp1 and πp4 in the case when |γ1| = k−i = 1, |A| = |β1| = i−j � 1,

|B| = |α| + 1 = j − 1 � 1. This means that i = k − 1, and such an 8–

cycle has the form C4
8 = rkrk−jrk−1rjrkrk−jrk−1rj, 2 � j � k − 2, the

canonical form of which corresponds to (2.6) in Theorem 2.7.4, if we set

j = i. So, there is a unique path of length three under the conditions

listed, unless |A| = |B| = 1 when by Lemma 2.7.7 (case 2c) this path is

not unique. So, k = 4, j = 2, i = 3 and 8–cycles take forms r2r3r2r4r3r2r3r4
and r3r2r3r4r3r2r3r4, corresponding to forms (2.5) and (2.4).

Thus, the case of two copies is considered and all 8–cycles occurring in

this case are found.
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[qαpβs] = πs2

[pαqβs] = πs1

πq1 = [sβpαq]

πq2

πq3

[pαsβq] = πq4

[sβqαp] = πp1

πp2 = [qβsαp]

Pk−1(s) Pk−1(q)

Pk−1(p)

ri

rk−i+1

rk

rk

rk

Figure 15. (2 + 2 + 4)–situation

Case 2: an 8–cycle within Pk has vertices from three copies of Pk−1

Suppose an 8–cycle is formed on vertices from copies Pk−1(p), Pk−1(q),

Pk−1(s), where 1 � p �= q �= s � k. We have the following possible

situations in this case.

(2 + 2 + 4)–situation. Suppose two vertices πs1, πs2 of such an 8–cycle

belong to a copy Pk−1(s), two vertices πp1, πp2 belong to a copy Pk−1(p),

and four vertices πql , l = 1, . . . , 4, belong to a copy Pk−1(q) (see Figure 15).

Let us consider πs1 = [p α q β s], where α = [π2 . . . πi−1], |α| = i − 2, and

β = [πi+1 . . . πk−1], |β| = k − i − 1. Since a vertex πs2 should be adjacent

to a vertex from a copy Pk−1(q), hence πs2
1 = q and we immediately have

πs2 = πs1 ri = [q α p β s], where πs2
i = p.

The vertex πs2 must be joined by an external edge with a vertex πq1 from

a copy Pk−1(q), hence

πq1 = πs2 rk = [s β p α q], where πq1
k−i+1 = p.

The vertex πs1 must be joined by an external edge with a vertex πp1 from

a copy Pk−1(p), hence

πp1 = πs1 rk = [s β q α p], where πq1
k−i+1 = s.
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Since a vertex πp2 should be adjacent to a vertex from a copy Pk−1(q), then

πp2
1 = q and we immediately have

πp2 = πp1 rk−i+1 = [q β s α p], where πp2
k−i+1 = s.

The vertex πp2 must be joined by an external edge with a vertex πq4 from

a copy Pk−1(q), hence

πq4 = πp2 rk = [p α s β q], where πq4
i = s.

Now we describe a path of length three between vertices πq1 and πq4 which

are differed in the order of segments s β and p α. This means they have

the forms [γ1AB γ2] and [γ1BAγ2], where γ1 is empty, i.e. |γ1| = 0, and

A = s β, B = p α, γ2 = q and |A| = |β|+1 � 1, |B| = |α|+1 � 1. Then by

Lemma 2.7.7 (case 2d), between vertices πq1 and πq4 there exists a unique

path of length three provided that |A| = k− i � 2 and |B| = i−1 � 2, and

no path of this length if |A| = 1 or |B| = 1. This means that 3 � j � k−2,

where k � 5. Thus, an 8–cycle has the following form:

C4
8 = rk rk−i+1 rk ri−1 rk−1 rk−i rk ri, where 3 � i � k − 2,

the canonical form of which corresponds to (2.7) in Theorem 2.7.4 for

4 � k � n.

(2 + 3 + 3)–situation. Suppose two vertices πs1, πs2 of such an 8–cycle

belong to a copy Pk−1(s), three vertices πp1, πp2, πp3 belong to a copy

Pk−1(p), and three vertices πq1, πq2, πq3 belong to a copy Pk−1(q) (see Fig-

ure 16). Let πs1 = [pαqβs], where α = [π2 . . . πi−1], |α| = i − 2, and

β = [πi+1 . . . πk−1], |β| = k− i− 1. Vertices πs1 and πs2 should be adjacent

to vertices from distinct (k−1)–copies, hence they are presented as follows:

πs2 = πs1 ri = [q α p β k], where πs2
i = p.

The vertex πs1 must be joined by an external edge with a vertex πp1 from

a copy Pk−1(p), hence

πp1 = πs1 rk = [s β q α p], where πp1
k−i+1 = q.

The vertex πs2 must be joined by an external edge with a vertex πq1 from

a copy Pk−1(q), hence

πq1 = πs2 rk = [s β p α q], where πq1
k−i+1 = p.
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[pαqβs] = πs1 πs2 = [qαpβs]

[sβpαq] = πq1

πp1 = [sβqαp]

πp2

πp3

πq2

πq3

Pk−1(s)

Pk−1(q)Pk−1(p)

rk

ri
rk

rk

Figure 16. (2 + 3 + 3)–situation

The vertex πp3 must be joined by an external edge with a vertex πq3

from a copy Pk−1(q), hence we have πp3
1 = q. Thus, vertices πp1 and πp3

should be joined by a path of length two with the condition above. It can

be obtained by the following two ways:

πp1 = [sβqαp] →
{

[β2sβ1qαp] → [qβ1sβ2αp] = πp13, where |β2| �= 0.

[α2qβsα1p] → [qα2βsα1p] = πp23, where |α2| �= 0.

From the other side, the vertex πq3 must be joined by an external edge

with a vertex πp3 ∈ Pk−1(p), hence we have π
q3
1 = p. Thus, vertices πq1 and

πq3 should be joined by a path of length two with the condition above. It

can be obtained by the following two ways:

πq1 = [sβpαq] →
{

[β2sβ1pαq] → [pβ1sβ2αq] = πq13 , where |β2| �= 0.

[α1pβsα2q] → [pα1βsα2q] = πq23 , where |α1| �= 0.

Let us note that vertices πp3 and πq3 should be joined by an external edge,

which means that the order of segments in the permutations should be

reversed. An analysis of non–empty segments in these permutations shows

that external edges occur between the following vertices:

• πp13 and πq23 , when |α2| = 0 and |β1| = 0;

• πp23 and πq13 , when |α1| = 0 and |β1| = 0;

• πp23 and πq23 , when |β| = 0.
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There is no external edge between permutations πp13 and πq13 since they

have the same order of elements in the segment s β2.

Thus, since |α| = i− 2, |β| = k− i− 1, then by using the external edge

between πp13 and πq23 , where |α2| = 0 and |β1| = 0, we have |α| � 1, |β| � 1,

and such an 8–cycle has the following form:

C5
8 = rk rk−i rk−i+1 rk ri−1 rk−1 rk ri, where 3 � i � k − 2, 5 � k � n,

the canonical form of which corresponds to (2.8) in Theorem 2.7.4.

Moreover, using the external edge between πp23 and πq13 , where |α1| = 0

and |β1| = 0, we have |α| � 1, |β| � 1, and such an 8–cycle has the form

rk rk−1 ri−1 rk rk−i+1 rk−i rk ri, where 3 � i � k − 2, k � 5, the canonical

form of which also corresponds to (2.8) in Theorem 2.7.4. Finally, using

the external edge between πp23 and πq23 , where |β| = 0, we have i = k − 1,

|α1| = j � 1 and |α2| = k − 3− j � 1, so we have one more 8–cycle of the

following form:

C6
8 = rk rk−j−1 rk−j−2 rk rj+1 rj+2 rk rk−1, where 1 � j � k − 4, k � 5,

the canonical form of which corresponds to (2.9) in Theorem 2.7.4 if we

put j = i− 1.

Thus, the case of three copies is considered and all 8–cycles occurring

in this case are found.

Case 3: an 8–cycle within Pk has vertices from four copies of Pk−1

Suppose that such an 8–cycle occurs on vertices πs1, πs2 of a copy Pk−1(s),

πt1, πt2 of a copy Pk−1(t), πp1, πp2 of a copy Pk−1(p), πq1, πq2 of a copy

Pk−1(q), where 1 � s �= t �= p �= q � k (see Figure 17).

Let πq1 = [s α t β p γ q], where |α| � 0, |β| � 0, |γ| � 0. There are two

ways of distributing vertices among four (k − 1)–copies.

1) Suppose that the vertex πq1 is adjacent to a vertex πs1, and a vertex

πq2 is adjacent to a vertex πt1. Then vertices πs1 and πq2 should be presented

as follows:

πs1 = πq1 rk = [q γ p β t α s], πq2 = πq1 r|α|+2 = [t α s β p γ q],

and hence a vertex πt1, which is adjacent to πq2 , has the following form:

πt1 = πq2 rk = [q γ p β sα t].
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πq1 = [sαtβpγq] [tαsβpγq] = πq2

r|α|+2

[qγpβtαs] = πs1
πt1 = [qγpβsαt]

[pγqβtαs] = πs2

r|γ|+2

πt2 = [pγqβsαt]

r|γ|+2

πp1 = [sαtβqγp]
[tαsβqγp] = πp2

rk rk

rkrk

Pk−1(q)

Pk−1(t)

Pk−1(p)

Pk−1(s)

case 1

πq1 = [sαtβpγq] [pβtαsγq] = πq2

r|α|+|β|+3

[qγpβtαs] = πs1
πp1 = [qγsαtβp]

[tβpγqαs] = πs2

r|β|+|γ|+3

πp2 = [tαsγqβp]

r|α|+|γ|+3

πt1 = [sαqγpβt]
[pβqγsαt] = πt2

rk rk

rkrk

Pk−1(q)

Pk−1(p)

Pk−1(t)

Pk−1(s)

case 2

Figure 17. (2 + 2 + 2 + 2)–situation

A vertex πs2 should be joined by an external edge with a vertex πp1 of a

copy Pk−1(p). This means that πs2
1 = p and we have:

πs2 = πs1 r|γ|+2 = [p γ q β t α s],

and a vertex πt2 should be joined by an external edge with a vertex πp2 of

a copy Pk−1(p). This means that πt2
1 = p and we have:

πt2 = πt1 r|γ|+2 = [p γ q β s α t].

Vertices πs2 and πt2 should be joined by external edges with vertices πp1

and πp2, correspondingly, such that:

πp1 = πs2 rk = [s α t β q γ p], πp2 = πt2 rk = [t α s β q γ p].

If an 8–cycle does exist, then vertices πp1, πp2 should be incident to the same

internal edge, and hence, there should exist a prefix–reversal transforming

πp1 into πp2. It is obvious that such a prefix–reversal exists, namely, r|α|+2.

If we set |α| = i− 2, |β| = j − i− 1, |γ| = k − j − 1, where 2 � i < j < k,

then such an 8–cycle has the following form:

C7
8 = rk rk−j+1 rk ri rk rk−j+1 rk ri, where 2 � i < j � k − 1, 4 � k � n,

the canonical form of which corresponds to (2.10) in Theorem 2.7.4.
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2) Suppose that the vertex πq1 is adjacent to a vertex πs1, and a ver-

tex πq2 is adjacent to a vertex πs1. Then vertices πs1 and πq2 should be

presented as follows:

πs1 = πq1 rk = [q γ p β t α s], πq2 = πq1 r|α|+|β|+3 = [p β t α s γ q].

Hence the vertex πp1, which is adjacent to πq2 , has the following form:

πp1 = πq2 rk = [q γ s α t β p].

A vertex πs2 should be joined by an external edge with a vertex πt1 from

a copy Pk−1(t), which means that πs2
1 = t and we have:

πs2 = πs1 r|β|+|γ|+3 = [t β p γ q α s].

Analogically, a vertex πp2 should be joined by an external edge with a

vertex πt2 from a copy Pk−1(t), which means that πp2
1 = t, hence we have:

πp2 = πp1 r|α|+|γ|+3 = [t α s γ q β p].

Vertices πs2 and πp2 should be joined by external edges with vertices πt1

and πt2, correspondingly, such that:

πt1 = πt2 rk = [s α q γ p β t], πt2 = πp2 rk = [p β q γ s α t].

In this case, an internal edge between vertices πt1 and πt2 does exist only

if |α| = |β| = |γ| = 0, which means that n = 4 and such an 8–cycle takes

the form:

C8
8 = r4 r3 r4 r3 r4 r3 r4 r3,

presented as the form (2.11) in Theorem 2.7.4.

Thus, all canonical forms for 8–cycles in Pn, n � 4, are obtained.

Now we count the total number N8 of distinct 8–cycles passing through

a given vertex in the graph. We denote

N8 =
8∑

i=1

NCi
8
,

where NCi
8
corresponds to the number of distinct 8–cycles described by the

canonical form C i
8, 1 � i � 8, and passing through a given vertex. Let us

note that any canonical form of an l–cycle describes l cycles (not necessarily
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distinct) for a given vertex. Among all canonical forms (2.4)–(2.11), there is

the only one, namely the form (2.8), which describes eight distinct 8–cycles.

In other cases, identical forms occur. For example, from the canonical form

C8
8 = r4r3r4r3r4r3r4r3 one can get two forms, namely, r4r3r4r3r4r3r4r3 and

r3r4r3r4r3r4r3r4 which are identical because they describe the same 8–cycle.

Thus, the canonical form C8
8 gives the only 8–cycle, hence, NC8

8
= 1.

Let us consider all other cases and find N8.

The canonical form C1
8 = rkrjrirjrkrk−j+irirk−j+i, where 2 � i < j �

k − 1 and 4 � k � n, gives identical forms of 8–cycles when j = k − j + i

such that: for a fixed k there are two identical forms for all j = k − j + i;

for fixed k and i there are only two distinct forms for all j = k− j + i. So,

the number of distinct 8–cycles is one quarter of the total number forms

presented by the canonical form C1
8 :

NC1
8
=

8

4

n−3∑
k=1

k∑
s=1

s = 2
(n− 3) (n− 2) (n− 1)

6
=

(n− 3) (n− 2) (n− 1)

3
.

For any form obtained from the canonical form C2
8 = rkrk−1r2rk−1rkr2r3r2,

where 4 � k � n, there exists its reversed form, which means that the num-

ber of distinct 8–cycles is half of the total number forms presented by the

canonical form C2
8 :

NC2
8
=

8(n− 3)

4
= 4(n− 3).

The canonical form C3
8 = rkrk−irk−1rirkrk−irk−1ri, where 2 � i � k − 2

and 4 � k � n, consists of two identical parts, which means that it gives at

least four distinct forms. Moreover, if k is even then for all i = k
2 there are

only two distinct forms. We count numbers m1 and m2 of distinct forms

obtained from the canonical form C3
8 for all even 2s + 2 � n and all odd

2s+ 3 � n, respectively. Using identical forms we have:

m1 = 4

n−2

2∑
s=1

s− 2
(n
2
− 1

)
=

n(n− 2)

2
− (n− 2) =

(n− 2)2

2
,

m2 = 4

n−3

2∑
s=1

s =
(n− 3)(n− 1)

2
.
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If n is even then NC3
8
= (n−2)2

2
+ ((n−1)−3)((n−1)−1)

2
= (n − 2)(n− 3), and if

n is odd then NC3
8
= (n−3)(n−1)

2 + ((n−1)−2)2

2 = (n− 2)(n− 3), hence for any

n � 4 we have

NC3
8
= (n− 2)(n− 3).

Similar counts we use for the form C4
8 = rkrk−i+1rkrirkrk−irk−1ri−1,

where 2 � i � k − 2 and 5 � k � n, which gives identical forms of 8–

cycles when i = k − i + 1, such that if k is odd then for all i = k+1
2 there

are only four distinct forms. Using identical forms we count the numbers

m1 and m2 of distinct forms obtained from the canonical form C4
8 for all

even 2s+ 4 � n and all odd 2s+ 3 � n, correspondingly:

m1 = 8

n−4

2∑
s=1

s = (n− 2)(n− 4),

m2 = 8

n−3

2∑
s=1

s− 4

(
n− 1

2
− 1

)
= (n− 1)(n− 3)− 2(n− 3) = (n− 3)2.

If n is even then NC4
8
= (n−2)(n−4)+((n−1)−3)2 = 2(n−3)(n−4), and

if n is odd then NC4
8
= (n−3)2+((n−1)−2)((n−1)−4) = 2(n−3)(n−4),

hence for any n � 5 we have

NC4
8
= 2(n− 3)(n− 4).

The canonical form C5
8 = rkrk−1ri−1rkrk−i+1rk−irkri, where 3 � i � k − 2,

5 � k � n, gives only distinct forms of 8–cycles, so we have:

NC5
8
= 8

k−4∑
s=1

s = 4 (n− 3)(n− 4).

The calculations for the canonical form C6
8 = rkrk−1rkrk−irk−i−1rkriri+1,

where 2 � i � k − 3 and 5 � k � n, are similar to those we have for the

canonical form C4
8 , so for any n � 5 we have:

NC6
8
= 2(n− 3)(n− 4).

The canonical form C7
8 = rkrk−j+1rkrirkrk−j+1rkri, where 2 � i < j � k−1

and 4 � k � n, consists of two identical parts, so it gives at most four
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sequence of vertices algebraic description

1 1234-4321-2341-3241-4231-1324-3124-2134 r4 r3 r2 r3 r4 r2 r3 r2
2 1234-3214-2314-1324-4231-2431-3421-4321 r3 r2 r3 r4 r2 r3 r2 r4
3 1234-2134-3124-4213-2413-1423-4123-3214 r2 r3 r4 r2 r3 r2 r4 r3
4 1234-2134-4312-1342-3142-4132-2314-3214 r2 r4 r3 r2 r3 r4 r2 r3
5 1234-4321-2341-3241-4231-1324-2314-3214 r4 r3 r2 r3 r4 r3 r2 r3
6 1234-2134-3124-4213-1243-2143-4123-3214 r2 r3 r4 r3 r2 r3 r4 r3
7 1234-4321-3421-2431-4231-1324-3124-2134 r4 r2 r3 r2 r4 r2 r3 r2
8 1234-3214-2314-4132-1432-3412-4312-2134 r3 r2 r4 r2 r3 r2 r4 r2
9 1234-4321-3421-1243-2143-3412-4312-2134 r4 r2 r4 r2 r4 r2 r4 r2
10 1234-4321-2341-1432-3412-2143-4123-3214 r4 r3 r4 r3 r4 r3 r4 r3

Table 2. 8–cycles in P4 containing the identity permutation I = [1234].

identical forms. However, if i = k − j + 1 then all forms are identical. So,

the number of distinct 8–cycles is one–eighth of the total number of forms

presented by the canonical form C7
8 and we have:

NC7
8
=

8

8

n−3∑
k=1

k∑
s=1

s =
(n− 3) (n− 2) (n− 1)

6
.

Thus, summing all numbers for NCi
8
, 1 � i � 8, we get the total number

of distinct 8–cycles passing through a given vertex in the graph:

N8 =
n3 + 12n2 − 103n+ 176

2
.

This completes the proof of the main statement of Theorem.

The data produced by the given formula for N8 coincides with the data

produced by a computer experiment. For example, there are 10, 43 and

103 distinct 8–cycles passing through each vertex for n = 4, 5 and 6. These

data were obtained by M. Orlov, Novosibirsk State University. All 8–cycles

passing through I = [1234] in P4 are presented in Table 2.

The total number of distinct 8–cycles in Pn, n � 4, is obtained as fol-

lows. There are n! vertices in the graph, each of which belongs to N8

distinct 8–cycles. Hence, in total there are n!N8

8 = n!(n3+12n2−103n+176)
16 dis-

tinct 8–cycles in the graph. In particular, there are 30 cycles of length

eight in P4.
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[4321][1234]

[2134] [3421]

[2341][3214]

[4231]

[2431]

[3241]

[1324]

[2314]

[3142] [2413]

[1423]

[4123]

[2143]

[1243]

[4213]

[4312]

[3412]

[1342]

[4132]

[1432]

[3124]

Figure 18. Independent 8–cycles in P4

To show that there are n!
8 independent 8–cycles in Pn, n � 4, we use

the hierarchical structure of the Pancake graph. In P4 there are three

independent 8–cycles presented, for instance, as:

C1
8 = [1234]− [4321]− [2341]− [3241]− [4231]− [1324]− [2314]− [3214],

C2
8 = [2134]− [4312]− [1342]− [2431]− [3421]− [1243]− [4213]− [3124],

C3
8 = [3124]− [2413]− [1423]− [4123]− [2143]− [3412]− [1432]− [4132].

These independent 8–cycles are shown in Figure 18. From the hierarchi-

cal structure of Pn, it follows that there are n!
24 copies of P4, each of which

consists of exactly three independent 8–cycles. Hence, in total we have n!
8

independent 8–cycles in Pn. This completes the proof of Theorem. �

As one can see, the Pancake graph has a very complicated cycle struc-

ture. This makes one of the main difficulties in solving the Pancake prob-

lem that is the problem of finding the diameter of the Pancake graph. This

problem is still open. We consider this problem in the Section 3.2.



Chapter 3

The diameter problem

Cayley graphs tend to have a number of other desirable properties as well,

including low diameter. There is the problem of establishing the diameter

of a Cayley graph Γ = Cay(G, S), that is the maximum, over g ∈ G, of

the length of a shortest expression for g as a product of generators. Com-

puting the diameter of an arbitrary Cayley graph over a set of generators

is NP–hard since the minimal word problem is known to be NP–hard in

general. This result was shown in 1981 by Shimon Even and Oded Gol-

dreich in [30]. The diameter problem appears in the Rubik’s cube puzzle.

Recently it was announced [34] that every position of Rubik’s Cube can

be solved in twenty moves or less which represents the diameter of a corre-

sponding Cayley graph. General upper and lower bounds are very difficult

to obtain. Moreover, there is a fundamental difference between Cayley

graphs of abelian and non–abelian groups.

3.1 Diameter of Cayley graphs on abelian and non–

abelian groups

Laszlo Babai et al. [7] have considered in 1989 the diameter of Cayley

graphs on non–abelian finite simple groups and the following result was

obtained.

Theorem 3.1.1 [7] Every non–abelian finite simple group G has a set of

� 7 generators such that the resulting Cayley graph has diameter O(log2 |G|).
So, they have shown that each non–abelian simple group has a set of at

most seven generators that yields a Cayley graph with logarithmic diameter

61
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(with constant factors). However, this property does not hold for Cayley

graphs of abelian groups as it was shown in 1993 by Fred Annexstein and

Marc Baumslag in [3]. They have found a lower bound on the diameter of

Cayley graphs on abelian groups. Let us recall, that in an abelian group

the result of applying the group operation to two group elements does not

depend on their order, i.e. for any g, h ∈ G we have gh = hg, and every

subgroup of an abelian group is normal.

By diam(Cay(G, S)) we denote the diameter of a Cayley graphCay(G, S)

on a groupG with a generating set S. The result presented below is actually

obtained for a Cayley digraph, which means that there are no restrictions

for a generating set to be a symmetric or identity free.

Theorem 3.1.2 [3] Let G be an abelian group with a generating set S of

size r. The Cayley graph Cay(G, S) has the following diameter bound:

diam(Cay(G, S)) �
1

e
|G|1/r.

Proof. Suppose that G is an abelian group with a generating set S of

size r. Let n be the number of group elements that can be written as a

product of � d = diam(Cay(G, S)) elements from S. Since G is abelian,

n is at most equal to the number of ways d objects can be chosen from the

set of (r+ 1) objects with repetition allowed. The set of (r + 1) objects is

the set S with the identity element. The number of ways n is bounded as

follows:

n �

(
r + d

d

)
=

(r + d)!

r! d!
�

(r + d)r

r!
�

(r d)r

r!
� (ed)r.

Solving for d yields the given bound. �

We can get a tighter bound in the case r � |G|1/r � d. For then:

n �

(
r + d

d

)
=

(r + d)!

r! d!
�

(r + d)r

r!
�

(2d)r

r!
�

(
2ed

r

)r

.

On the other hand, in 1988 it was conjectured by Laszlo Babai and Akos

Seress [9] for non–abelian groups that the diameter will always be small.

Conjecture 3.1.3 [9] There exist a constant c such that for every non–

abelian finite simple group G, the diameter of every Cayley graph of G is

� (log2 |G|)c.
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If the conjecture is true, one would expect to find Cayley graphs of

these groups with small diameter. But this problem is open even for the

alternating groups An consisting of all even permutations on {1, . . . , n}.
The first step towards a solution this conjecture was made by Babai and

Seress [9] for the symmetric Symn and alternating An groups.

Theorem 3.1.4 [9] If G is either Symn or An then the diameter of every

Cayley graph of G is � exp((n lnn)(1/2)(1 + o(1))).

Even for simple examples the exact diameter is unknown and there are

only bounds. For example, the diameter of the Pancake graph is unknown.

3.2 Pancake problem

The original (unburnt) Pancake problem was posed in 1975 in the American

Mathematical Monthly by Jacob E. Goodman [28] writing under the name

“Harry Dweighter” (or “Harried Waiter”) and it is stated as follows:

“The chef in our place is sloppy, and when he prepares a stack

of pancakes they come out all different sizes. Therefore, when I

deliver them to a customer, on the way to the table I rearrange

them (so that the smallest winds up on top, and so on, down

to the largest on the bottom) by grabbing several pancakes from

the top and flips them over, repeating this (varying the number

I flip) as many times as necessary. If there are n pancakes, what

is the maximum number of flips (as a function of n) that I will

ever have to use to rearrange them?”

It is clear that a stack of these n pancakes can be represented by a per-

mutation on n elements and the problem is to find the minimum number

of flips (prefix–reversals) needed to transform a permutation into the iden-

tity permutation. Clearly, this number of flips corresponds to the diameter

diam(Pn) of the Pancake graph. There is the following open problem.

Problem 3.2.1 What is the diameter diam(Pn) of the Pancake graph?
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Simple lower and upper bounds for diam(Pn) are obtained as follows.

Consider any stack of pancakes. An adjacency in this stack is a pair of

pancakes that are adjacent in the stack, and such that no other pancake

has size intermediate between two. If the largest pancake is on the bottom,

this also counts as one extra adjacency. Now, for n � 4 there are stacks

of n pancakes that have no adjacencies and each move (flip) can create

at most one adjacency. So, we have n � diam(Pn). For upper bounds,

one can use the following procedure. Given any stack we may start by

bringing the largest pancake on top and then flip the whole stack: the

largest pancake is now at the bottom, after two flips. Inductively, bring to

the top the largest pancake that has not been sorted yet, and then flip it

to the bottom of the unsorted stack. So, by 2(n−1) flips we will have thus

sorted the whole thing, and the upper bound is diam(Pn) � 2(n− 1).

In 1979 W. H. Gates and Ch. H. Papadimitriou [33] presented the im-

proved upper and lower bounds for the diameter of the Pancake graph as

17n/16 � diam(Pn) � 5/3(n+1). In the next section we give an algorithm

for these bounds. Then bounds will be proved due to [33].

3.2.1 An algorithm by Gates and Papadimitrou

Let π = [π1 . . . πn] be a permutation and ri, 2 � i � n, be a prefix–reversal

such that [π1 . . . πi πi+1 . . . πn]ri = [πi . . . π1 πi+1 . . . πn]. If |πi − πi+1| = 1,

1 � i � n − 1, we say that the pair (i, i + 1) is an adjacency in π. We

also consider (i, i+1) to be adjacency if we have a segment [πiπi+1] = [1n]

or [πi+1πi] = [n 1] in π. Moreover, if π1 = 1 and πn = n then the pair

(1, n) is also an adjacency. All successive elements of a permutation having

adjacency form a block in a permutation π. If element πi is not in a block,

i.e. (i − 1, i) and (i, i + 1) are not adjacencies in π, then it is a free.

For example, in [654132] there are two blocks [654] and [32], and one free

element 1, and in [321654] there are 5 adjacencies, one block (since [16] has

an adjacency) and no one free elements.

Let us note that the identity permutation In = [123 . . . n] has one block

and n adjacencies. So, the presented algorithm sorts the permutation π so

as to create a total n adjacencies. Moreover, at each step it is determined

by what sequence of prefix–reversals (no more than 4) should be applied to
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increase an adjacency in a permutation. In total, there are nine different

cases. In the description of the algorithm below we use o to stand for one

of {−1, 1}. Addition is understood modulo n.

The algorithm GP

Step 0. Input: a permutation π = [π1π2 . . . πn] �= In.

If a given permutation has n− 1 adjacencies then go to Step 2, otherwise

go to Step 1.

Step 1. Let π1 = t. Then the following cases hold.

Case 1. If t and πi = t + o are free elements then we get a new permu-

tation π∗ by the following way:

[t . . . πi−1 t+ o πi+1 . . . πn] ri−1 = [πi−1 . . . t t+ o πi+1 . . . πn] = π∗,

i.e. π∗ = π ri−1.

Case 2. If t is free and πi = t+ o is the first element of a block then we

get a new permutation π∗ as in Case 1: π∗ = π ri−1.

Case 3. If t is free, πi = t + o and πj = t − o are the last elements of

blocks then we get a new permutation π∗ by the following way:

[t . . . πi−1 t+ o . . . πj−1 t− o . . . πn]
ri→ [t+ o πi−1 . . . t . . . πj−1 t− o . . . πn]

ri−1→

[. . . t+ o t . . . πj−1 t− o . . . πn]
rj→ [t− o πj−1 . . . t t+ o . . . πn]

rj−i→
→[. . . t− o t t+ o . . . πn] = π∗,

i.e. a permutation π∗ is obtained from a permutation π by applying four

prefix–reversals as follows:

π∗ = π ri ri−1 rj rj−i.

Case 4. If t is in a block and πi = t + o is free then we get a new

permutation π∗ as in Case 1: π∗ = π ri−1.

Case 5. If t is in a block and πi = t + o is the first element of a block

then we get a new permutation π∗ as in Case 1: π∗ = π ri−1.
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Case 6. If t is in a block with the last element πs = t + k · o, k > 0,

πj = t−o is the last element of another block and πi = t+(k+1) ·o is free,

then depending on the relative position of the two blocks and t+(k+1) ·o,
a new permutation π∗ is obtained by either way (a):

[t . . . πs−1 t+ k · o πs+1 . . . πi−1 t+ (k + 1) · o πi+1 . . . πj−1 t− o . . . πn]
ri→

[t+ (k + 1) · o πi−1 . . . πs+1 t+ k · o πs−1 . . . t πi+1 . . . πj−1 t− o . . . πn]
ri−s→

[. . . πi−1 t+ (k + 1) · o t+ k · o πs−1 . . . t πi+1 . . . πj−1 t− o . . . πn]
rj→

[t− o . . . πi+1 t . . . t+ k · o t+ (k + 1) · o . . . πn] rj−i→
[. . . t− o t . . . t+ k · o t+ (k + 1) · o . . . πn] = π∗,

or way (b):

[t . . . πs−1 t+k ·o πs+1 . . . πj−1 t−o πj+1 . . . πi−1 t+(k+1) ·o πi+1 . . . πn]
ri→

[t+ (k + 1) · o πi−1 . . . πj+1 t− o πj−1 . . . πs+1 t+ k · o πs−1 . . . t . . . πn]
ri−s→

[. . . πj−1 t− o πj+1 . . . πi−1 t+ (k + 1) · o t+ k · o . . . t πi+1 . . . πn]
ri→

[t . . . t+ k · o t+ (k + 1) · o . . . πj+1 t− o . . . πn]
ri−j+s→

[. . . t+ (k + 1) · o t+ k · o . . . t t− o . . . πn] = π∗.

Thus, in Case 6 (a) a permutation π∗ is obtained from a permutation π by

applying four prefix–reversals as follows:

π∗ = π ri ri−s rj rj−i.

In Case 6 (b) a permutation π∗ is obtained from a permutation π by also

applying four prefix–reversals as follows:

π∗ = πriri−sriri−j+s.

Case 7. If t is in a block with the last element πi = t + k · o, k > 0,

and πj = t + (k + 1) · o is in a block, then depending on whether πj is at

the beginning (a), or the end (b) of its block, a permutation π∗ is obtained
from a permutation π as follows:

(a) : [t . . . πi−1 t+ k · o πi+1 . . . t+ (k + 1) · o πj+1 . . . πn]
ri→

[t+ k · o πi−1 . . . t πi+1 . . . t+ (k + 1) · o πj+1 . . . πn]
rj−1→
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[. . . t . . . t+ k · o t+ (k + 1) · o . . . πn] = π∗.

(b) : [t . . . πi−1 t+ k · o πi+1 . . . πj−1 t+ (k + 1) · o . . . πn] rj→
[t+ (k + 1) · o πj−1 . . . πi+1 t+ k · o . . . t . . . πn] rj−i→

[. . . t+ (k + 1) · o t+ k · o . . . t . . . πn] = π∗.

Thus, in Case 7 (a) a permutation π∗ is obtained from a permutation π by

using two prefix–reversals:

π∗ = π ri rj−1.

In Case 7 (b) a permutation π∗ is also obtained from a permutation π by

applying two prefix–reversals as follows:

π∗ = π rj rj−i.

If a permutation π∗ has n− 1 adjacencies then π := π∗ and go to Step 2,

otherwise π := π∗ and repeat Step 1.

Step 2. A permutation π with n − 1 adjacencies has one block. Then

there are two cases.

Case 8. Let π = [i− 1 . . . 1n . . . i], where πi = n, then In is obtained by

the following way:

[i− 1 . . . 1n . . . i]
rn→ [i . . . n 1 . . . i− 1]

rn−i+1→ [n . . . i 1 . . . i− 1]
rn→

[i− 1 . . . 1 i . . . n]
ri−1→ [1 . . . i− 1 i . . . n] = In,

i.e. the identity permutation is obtained from a permutation π by applying

four prefix–reversals such that:

In = πrnrn−i+1rnri−1.

Case 9. Let π = [i . . . n 1 . . . i−1], where πn−i+1 = n, then In is obtained

by the following way:

[i . . . n 1 . . . i− 1]
rn−i+1→ [n . . . i 1 . . . i− 1]

rn→ [i− 1 . . . 1 i . . . n]
ri−1→

[1 . . . i− 1 i . . . n] = In,

i.e. the identity permutation is obtained from a permutation π by applying

three prefix–reversals such that:

In = πrn−i+1rnri−1.

The end
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3.2.2 Upper bound on the diameter of the Pancake graph

Theorem 3.2.2 [33] Algorithm GP creates the identity permutation by

at most (5n+ 5)/3 prefix–reversals.

Proof. First, it is clear that if we have a permutation with less than

n− 1 adjacencies, one of the Cases 1–7 is applicable. Hence, the algorithm

does not halt unless n− 1 adjacencies have been created. Then one of the

Cases 8–9 is applicable to get the identity permutation with n adjacencies

and one block. Then the algorithm is finished. Obviously, the algorithm

will eventually halt, since at each execution of the main loop at least one

new adjacency is created and none are destroyed. It remains to prove that

it does so in no more than (5n+ 5)/3 prefix–reversals.

Call the action of Case i as action of a type i (or just action i). Let xi,

where i = 1, . . . , 9, denote the number of actions of type i performed by an

execution of the algorithm assuming that x3 = x6. Then the total number

z of prefix–reversals given by the Cases 1–7 are presented as follows:

z = x1 + x2 + 4x3 + x4 + x5 + 2x7,

where xi is multiplied by the number of prefix–reversals involved in the

corresponding case. Action 3 can be divided into four special cases, ac-

cording to what happens in the corresponding flipping that comes before

the last. The top of stack before the flipping and the element next to t− o

may either: 1) be non–adjacent; 2) form a new block; 3) merge a block

with a singleton; 4) merge two blocks. Accordingly, we distinguish among

these subcases by writing x3 = x31 + x32 + x33 + x34.

Now, since each action increases the number of adjacencies as indicated

in the table below, the total number of n− 1 adjacencies in the conclusion

of the Step 1 (Cases 1–7) of the algorithm is presented as:

n− 1 = a+ x1 + x2 + 2x31 + 3x32 + 3x33 + 3x34 + x4 + x5 + x7, (3.1)

where a is a number of adjacencies in a given permutation π.

Finally, if b is the number of blocks in a given permutation π then we

have:

b+ x1 − x31 − x33 − 2x34 − x5 − x7 = 1, (3.2)
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Action 1 2 31 32 33 34 4 5 7

number of prefix–reversals 1 1 4 4 4 4 1 1 2

increase in adjacencies 1 1 2 3 3 3 1 1 1

increase in number of blocks 1 0 -1 0 -1 -2 0 -1 -1

because each type of actions increases or decreases the number of blocks

as indicated in the table above, we start with b blocks and we end up with

1 block. Also notice that b � a, whereby, from (3.1) becomes:

x1 + x2 + 2x31 + 3x32 + 3x33 + 3x34 + x4 + x5 + x7 + b � n− 1. (3.3)

Thus, any possible application of the algorithm would, at worst,

maximize z = x1 + x2 + 4x3 + x4 + x5 + 2x7,

subject to (3.2) and (3.3). Then it is claimed that the maximum is achieved

for the values:

x1 = (n+ 1)/3, x2 = 0, x3 = x31 = (n− 2)/3, x4 = x5 = x7 = b = 0,

yielding a value of z equal to z = (5n − 7)/3. To show this claim, recall

the duality Theorem stating that this maximum value equals the minimum

values of the dual linear program:

minimize ω = ξ2 + (n− 1)ξ3,

subject to the inequalities:

ξ2 + ξ3 � 1,

ξ3 � 1,

−ξ2 + 2ξ3 � 4,

3ξ3 � 4,

−ξ2 + 3ξ3 � 4,

−2ξ2 + 3ξ3 � 4,

ξ3 � 1,

−ξ2 + ξ3 � 1,

−ξ2 + ξ3 � 2,

ξ2 + ξ3 � 0,



70 The diameter problem

where ξ2 and ξ3 correspond to increases in number of blocks and in adja-

cencies, correspondingly (see the table above).

Thus, in order to prove the claim, we just have to exhibit a pair (ξ2, ξ3)

satisfying these inequalities and having ω = ξ2 + (n − 1)ξ3 = (5n − 7)/3.

And such pair is ξ2 = −2/3, ξ3 = 5/3.

Thus, we get a permutation with n − 1 adjacencies in no more than

(5n−7)/3 prefix–reversals. The bound (5n+5)/3 now follows directly, since

it takes four more prefix–reversals to transform a permutation with n− 1

adjacencies to the identity permutation which follows from the Cases 8–9

of the algorithm. Finally, algorithm GP creates the identity permutation

by at most (5n+ 5)/3 prefix–reversals. �

3.2.3 Lower bound on the diameter of the Pancake graph

Let τ = [17536428]. For k, a positive integer, τk denotes τ with each of

the integers increased by 8(k− 1). In other words, τk = [1k7k5k3k6k4k2k8k]

where mk = m+ 8(k − 1). Consider the permutation

χ = τ1 τ
R
2 τ3 τ

R
4 · · · τm−1 τ

R
m, (3.4)

where m is an even integer, n = |χ| = 8m, τ = τ1, and τRk = τk r8 =

[8k2k4k6k3k5k7k1k] for any even k � m.

Let f(χ) be the number of prefix–reversals transforming a permutation

χ to the identity permutation. Then the following theorem takes place.

Theorem 3.2.3 [33] 17n/16 � f(χ) � 19n/16 for n a multiple of 16.

Proof. To show the upper bound, we first do the following sequences of

prefix–reversals:

χ → τ2 τ
r
1 τ3 · · · → τ r2 τ

r
1 τ3 · · · → τ1 τ2 τ3 · · ·

and so on, bringing the even–indexed χ’s in front and then back with

the reversal canceled in three moves. Thus, in 3n/16 moves we obtain

a permutation χ′ = τ1 τ2 τ3 τ4 · · · τm−1 τm. Then, for each copy of τ in

χ′ we repeat the following sequence of eight moves (among a number of

possibilities):

χ′ = x17536428y → 571xr36428y → 63x175428y → 1xr3675428y →



3.2. PANCAKE PROBLEM 71

→ 45763x128y → 67543x128y → 76543x128y → 21xr345678y →
→ x12345678y.

Since n = 8m then it takes n prefix–reversals for such moves. Thus, in a

total of 19n/16 prefix–reversals one can produce the identity permutation

starting from χ, and the upper bound is established: f(χ) � 19n/16.

For the lower bound, let

χ ≡ χ0 → χ1 → χ2 → . . . → χf(χ) ≡ In (3.5)

be an optimal sequence of moves for χ. Each of χi for any i = 1, . . . , f(χ) is

called a move. Let us call a move k–stable, if it contains a substring of the

form 1k7kσ2k8k (or its reverse), where σ is a permutation of {3k, 4k, 5k, 6k}.
We say that χi is an event, if χi−1 is k–stable for some k but χi, χi+1, . . . χf(χ)

are not.

Claim 1. There are exactly m events in (3.5).

To prove Claim 1, we notice that χ0 is k–stable for k = 1, . . . , m, and

χf(χ) is not k–stable for any k. Furthermore, no permutation can stop

being k1–stable and k2–stable, k1 �= k2, in only one move. �

Let us call χi a waste if χi has no more adjacencies than χi−1. (Here,

by an adjacency in σ we mean any pair (i, i+1) such that either 1 � i < n

and |σi − σi+1| = 1, or σ1 = 1, σn = n). Let w denote the total number of

wastes among {χi : i = 1, . . . , f(χ)}.

Claim 2. n+ w � f(χ).

To see why this is true, one just has to notice that χ has no adjacencies,

the identity permutation has n adjacencies, and any move that is not a

waste creates just one adjacency. �

By Claim 1 one can conclude that in the optimal sequence that we are

considering (3.5) there are m events as shown below:

χi1
∗→ χi2

∗→ χi3
∗→ . . .

∗→ χim, (3.6)

where
∗→ is the transitive closure of→, which means that we are interesting

only in moves from an event to an event, and others moves are omitted.
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Claim 3. For all j, 1 � j � m−1, there exist a waste χl with ij � l � ij+1.

To prove claim 3, suppose that it fails. In other words, suppose that

there is an event ij other than the last one, such that all moves χl, where

ij � l � ij+1, construct a new adjacency without destroying an existing

adjacency. Suppose that k is the appropriate index for which χij−1 is

the last k–stable permutation in the sequence considered. Then, χij−1 =

[x 1k7kσ2k8k y], where x and y are strings of integers and σ is a permutation

of {3k, 4k, 5k, 6k}. Notice that since our basic string τ = [17536428] is

symmetric (in that i + j = 9 if and only if τi + τj = 9) this is not a loss

of generality. For simplicity in our notation, we shall omit the subscript

k in the rest of this part of our argument; we shall also assume that σ =

[5364], since the argument is identical for any σ). Thus, the last k–stable

permutation in the sequence (3.6) is presented as χij−1 = [x 17536428y].

We distinguish among two cases.

Case 1. Let x be the empty string. Since χij is neither waste nor

k–stable, we must have a permutation with a new adjacency:

χij = [46357128y].

Now, we must not, according to our hypothesis, have a waste until after

the next event. This, however, is impossible, since the first move after χij ,

which flips more than four elements is a waste.

Case 2. Let x be not the empty string. That is χij−1 = [x17536428y].

Since χij is neither a waste nor k–stable, it must be the case that x = 9z and

χij = [2463571zR98y]. Again, we must not have a waste until after the next

event. This means that the only moves permitted are local rearrangements

of the integers {1, 2, 3, 4, 5, 6, 7}; thus
χij = [2463571zr98y]

∗→ [7654321zr98y].

Again, the next move has to be a waste. �

The theorem now follows directly from Claims 1, 2 and 3:

f(χ) � n+ w � n+
m

2
= 17n/16.

�

Thus, from this theorem we immediately have the following result.

Corollary 3.2.4 17n/16 � diam(Pn) for n a multiple of 16.
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3.2.4 Improved bounds by Heydari and Sudborough

Gates and Papadimitrou concluded in [33] that

“... slightly better lower bounds may be conceivably proved by

using different τ ′ – of length 7, say. However, we do not know

how the upper and lower bounds can be narrowed significantly.”

A lower bound was improved in 1997 by Heydari and Sudborough [40]

on the basic permutation ζ = [1753642]. Then as above for k, a positive

integer, ζk = [1k7k5k3k6k4k2k] where mk = m + 7(k − 1). Consider the

permutation

ϕn = ζ1 ζ2 · · · ζm, (3.7)

where m is an even integer, n = |ζ| = 7m, ζ = ζ1.

Let f(ϕn) be the number of prefix–reversals transforming a permutation

ϕn to the identity permutation. Then the following theorem holds.

Theorem 3.2.5 [40] 15n/14 � f(ϕn) for all n ≡ 0 (mod 14).

The proof is similar to that given by Gates and Papadimitrou [33].

Proof. Let

ϕ ≡ ϕ0 → ϕ1 → . . . → ϕf(ϕn) ≡ In (3.8)

be an optimal sequence of moves for ϕn. Each of ϕi, i = 1, . . . , f(ϕn), is

called a move. A move is called k–stable if it contains a substring of the

form

[1k7kσ2k8k] = [1k7kσ2k1k+1]

(or its reverse), where σ is a permutation of {3k, 4k, 5k, 6k}. (Assuming

that 8k = 1k+1, i.e., the (n + 1)th pancake, is in its correct place at the

bottom of the stack). We say that ϕi is an event if ϕi−1 is k–stable, for

some k, but ϕi, ϕi+1, . . . ϕf(ϕn) are not.

Claim 1. There are exactly m events in (3.8).

To prove Claim 1, we notice that ϕ0 is k–stable for all k = 1, . . . , m,

and ϕf(ϕn) is not k–stable for any k. Furthermore, no permutation can stop

being k1–stable and k2–stable in only one move for k1 �= k2. �
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A waste is defined as above: ϕi is a waste if it has no more adjacencies

than ϕi−1. The total number of wastes among {ϕi : i = 1, . . . , f(ϕn)} is

denoted by w.

Claim 2. n+ w � f(ϕn).

This Claim is true because ϕn has no adjacencies, and the identity

permutation In has n adjacencies, and any move that is not a waste creates

just one adjacency. �

By Claim 1, it is concluded that in the optimal sequence we con-

sider (3.8) there are m events as shown by:

ϕi1
∗→ ϕi2

∗→ ϕi3
∗→ . . .

∗→ ϕim, (3.9)

where
∗→ is the transitive closure of→, which means that we are interesting

only in moves from an event to an event, and others moves are omitted.

Claim 3. For all j, 1 � j � m−1, there exist a waste ϕl with ij � l � ij+1.

To prove Claim 3, suppose that there is an event ij other than the last

one, such that all moves ϕl, ij � l � ij+1, construct a new adjacency

without destroying an existing adjacency. Let k be the appropriate index

for which ϕij−1 is the last k–stable permutation in the sequence (3.8). Then

ϕij−1 = [x 1k7kσ2k8k y] = [x 1k7kσ2k1k+1 y],

where x and y are strings of integers and σ is a permutation of {3k, 4k, 5k, 6k}.
Notice that because the string ζ = [1k7k5k3k6k4k2k8k] is symmetric (in that

i+ j = 9 if and only if ik+ jk = 9+2(k−1)7), this is without loss of gener-

ality. For simplicity, ik is replaced just by i in the rest of the argument; it

is also assumed that σ = [5364] because the argument is identical for any

σ. Thus, the last k–stable permutation in the sequence (3.8) is presented

as:

ϕij−1 = [x 17536428y].

We distinguish two cases.

Case 1. Let x be the empty string. Whereas ϕij is neither a waste nor

k–stable, we must have a permutation with a new adjacency:

ϕij = [46357128y].
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Now, we must not, according our hypothesis, have a waste until after the

next event. This, however, is impossible, because the first move after ϕij

which flips more that four elements is a waste. Note that 8k = 1k+1 re-

mains fixed in any prefix–reversal of the four elements, and therefore all

such prefix–reversals do not change whether ϕij−1 contains (or does not

contain) the substring [1k+17k+1σ2k+18k+1] (or its reversal) for any σ. Also,

whereas 1k = 8k−1 is the first element in ϕij−1 and therefore quite appar-

ently is not next to 2k−1, the move ϕij−1 does not contain the substring

[8k−12k−1σ7k−11k−1] (or its reversal) for any σ. Whereas any prefix–reversal

of the first four elements will not create such a substring and break it, there

is no event created by such prefix–reversals that involves (k − 1)–stability

or (k + 1)–stability.

Case 2. Let x be not the empty substring. That is, ϕij−1 = [x17546428y].

Since ϕij is neither a waste nor k–stable, it must be the case that x = 9z

for some z and ϕij = [2463571zR98y]. Again, we must not have a waste

until after the next event. This means the only moves permitted are local

rearrangements of the integers {1, 2, 3, 4, 5, 6, 7}; thus
ϕij = [2463571zR98y]

∗→ [7654321zr98y].

Again, the next move has to be a waste. Suppose that ϕij contains a

substring of the form [1k−17k−1σ2k−18k−1] for some σ. Recall that 8k−1 = 1k,

so each move involving a local permutation of the integers {1, 2, 3, 4, 5, 6, 7},
including the move ϕij = [2463571zr98y], does not change the status of

(k − 1)–stability. Similarly, for (k + 1)–stability, because the symbol 8k =

1k+1 remains fixed throughout. �

Theorem 3.2.5 now follows directly from Claims 1, 2 and 3:

f(ϕn) � n+ w � n+
m

2
= 15n/14.

�

Corollary 3.2.6 15n/14 � diam(Pn) for n a multiple of 14.

Recently an improved upper bound was presented by Hal Sudborough

in cooperation with a team from University of Texas at Dallas (see [21])

as follows:

diam(Pn) � 18n/11.
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3.2.5 Exact values on the diameter of the Pancake graph

Heydari and Sudborough also computed the diameter of the Pancake graph

Pn up to n = 13. The diameter for n = 14, 15 was found in 2005 by Yuusuke

Kounoike, Keiichi Kaneko, and Yuji Shinano [56]. In one year, in 2006 the

same authors and Shogo Asai [4] showed the diameter for n = 16, 17. In

2011 the diameter for n = 18, 19 was found by Cibulka [19].

The table of the values for the diameter d = diam(Pn) of the Pancake

graph Pn, where 2 � n � 19, is presented below:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

d 1 3 4 5 7 8 9 10 11 13 14 15 16 17 18 19 20 22

3.3 Burnt Pancake problem

The Burnt Pancake problem was introduced by Gates and Papadimitrou

in [33]. This problem concerns sorting a stack of pancakes not only of dif-

ferent sizes but each with side burnt. Initially, the pancakes are arbitrary

ordered and each pancake may have either side up. After sorting, the pan-

cakes must not only be in size order, but must have their burnt sides face

down. Two–sided pancakes can be represented by a signed permutation

on n elements with some elements negated.

So, in this case we deal with the hyperoctahedral group Bn, which is

defined as the group of all permutations πσ acting on the set {±1, . . . ,±n}
such that πσ(−i) = −πσ(i) for all i ∈ {1, . . . , n}. An element of Bn is a

signed permutation, i.e. a permutation with a sign attached to every entry

and determined by two pieces of information: |π(|i|)|, which permutes

{1, . . . , n}, and the sign of πσ(i) for 1 � i � n. This gives a bijection

between Bn and the wreath product Z2 	Symn of the “sign–change” cyclic

group Z2 with the symmetric group Symn; thus |Bn| = 2nn! .

The Burnt Pancake problem consists of finding the diameter of the Cay-

ley graph BPn, n � 2, which is defined on the hyperoctahedral group Bn

of signed permutations and generated by sign–change prefix–reversals rσi ,
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1 � i � n, changing signs of reversing elements from any substring [1, i],

of a signed permutation πσ when multiplied on the right, i.e.

[π1 . . . πj . . . πi . . . πn]r
σ
i = [πi . . . πj . . . π1 . . . πn].

Let us note that the sign–change prefix–reversals rσ1 just changes a sign of

the first element of permutation. The Cayley graph defined above is called

Burnt Pancake graph [52].

There is the following open problem.

Problem 3.3.1 What is the diameter of the Burnt Pancake graph?

Gates and Papadimitrou [33] gave the following bounds on the diameter

of the Burnt Pancake graph:

3n/2− 1 � diam(BPn) � 2n+ 3.

The improved bounds for the diameter diam(BPn) of the Burnt Pancake

graph were given by Cohen and Blum [23]:

3n/2 � diam(BPn) � 2n− 2,

where the upper bound holds for n � 10.

It was also conjectured that the worst case for sorting signed per-

mutations (burnt pancakes) is the negative identity permutation I−n =

[−1 − 2 . . . − n]. Later Hyedari and Sudborough [40] showed that if the

conjecture is true then the diameter of the Burnt Pancake graph is

diam(BPn) � 3(n+ 1)/2,

since I−n can be sorted in 3(n + 1)/2 steps for all n = 3 (mod 4) and

n � 23. Currently, exact values of d = diam(BPn) are known for n � 18

and presented as follows:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

d 1 4 6 8 10 12 14 15 17 18 19 21 22 23 24 26 28 29
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3.4 Sorting by reversals

In general, a pancake stack is an example of a data structure. In com-

puter science and molecular biology the problem presented above is also

related to sorting by prefix–reversals. The Pancake graph has practical ap-

plications in parallel processing since it corresponds to the n–dimensional

pancake network such that this network has processors labeled with each

of the n! distinct permutations of length n. Two processors are connected

when the label of one is obtained from the other by some prefix–reversal.

The diameter of this network corresponds to the worst communication de-

lay for transmitting information in a system. The pancake sorting can

also provide an effective routing algorithm between processors. There is a

very nice survey by Marie–Claude Heydemann [39] about Cayley graphs

as interconnection networks, which can be recommended for more details.

Recent advances in genome identification have also brought to light

questions in molecular biology very similar to the Pancake problem. Differ-

ences in genomes are usually explained by accumulated differences built up

in the genetic material due to random mutation and random mating. An-

other mechanism of evolution was discovered in 1986 by Jeffrey D. Palmer

and Laura A. Herbon [67]. Comparing two genomes one can often find

that these two genomes contain the same set of genes. But the order of

the genes is different in different genomes. For example, it was found that

both human X chromosome and mouse X chromosome contain eight genes

that are identical. In human, the genes are ordered as [4 6 1 7 2 3 5 8] and

in mouse, they are ordered as [1 2 3 4 5 6 7 8]. It was also found that a set

of genes in cabbage are ordered as [1 − 5 4 − 3 2] and in turnip, they are

ordered as [1 2 3 4 5]. The comparison of two genomes is significant because

it provides us some insight as to how far away genetically these species are.

If two genomes are similar to each other, they are genetically close. This

has inspired some molecular biologists to look at the mechanisms which

might shuffle the order of the genetic material. One way of doing this is

the prefix–reversals or just reversals. Analyzing the transformation from

one species to another is analogous to the problem of finding the shortest

series of reversals to transform one into the other.

In the 1980’s it was shown that the difference in genomes is also ex-
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plained by a small number of reversals which are the operations reversing

the order of a substring of a permutation. Reversal distance measures the

amount of evolution that must have taken place at the chromosome level,

assuming evolution proceeded by inversion. More precisely, a reversal ri,j
is the operation of reversing segments [i, j], 1 � i < j � n, of a per-

mutation when multiplied on the right, i.e. [. . . πi πi+1 . . . πj−1 πj . . .]ri,j =

[. . . πj πj−1 . . . πi+1 πi . . .]. The reversal distance d(π, τ) between two per-

mutations π and τ is the least number d of reversals needed to transform π

into τ, i.e., πri1,j1 . . . rid,jd = τ . The corresponding Cayley graph defined on

the symmetric group and generated by the reversals is called the Reversal

graph Symn(R). It was defined in Section 1.3.5 where some its properties

were also presented.

The problem of determining the smallest number of reversals required

to transform a given permutation into the identity permutation is called

sorting by reversals. Mathematical analysis of the problem was initiated by

David Sankoff [73] in 1992, and then continued by another authors. There

are two algorithmic subproblems.

The first one is to find the reversal distance d(τ1, τ2) between two per-

mutations τ1 and τ2. Notice that the reversal distance between τ1 and τ2
is equal to the reversal distance between π = τ−1

2 τ1 and the identity per-

mutation In. It was shown by John Kececioglu and David Sankoff [46] in

1995 and by Vineet Bafna and Pavel Pevzner [11] in 1996 that

max
π∈Symn

d(π, In) = n− 1.

The path distance in the Reversal graph Symn(R) corresponds to the re-

versal distance between two permutations. Hence, its diameter is n − 1,

and the only permutations needing these many reversals are the Gollan

permutation γn and its inverse, where the Gollan permutation, in one–line

notation, is defined as follows

γn =

{
[315274 . . . n− 3n− 5n− 1n− 4nn− 2], if n is even

[315274 . . . n− 6n− 2n− 5nn− 3n− 1], if n is odd.

As it was shown above, the signed permutations are also used to rep-

resent genomes when a direction of genes is significant. The reversal dis-

tance ρ(πσ, τσ) between two signed permutations πσ and τσ is the least
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number ρ of sign–change reversals needed to transform πσ into τσ, i.e.,

πσrσi1,j1 . . . r
σ
id,jd

= τσ. The Reversal graph Bn(R
σ) is defined on Bn and

generated by the sign–change reversals from the set Rσ = {rσi,j ∈ Bn, 1 �

i � j � n}, where a sign–change reversal rσi,j, 1 � i � j � n, is defined as

the operation of reversing segments [i, j] of a signed permutation πσ with

flipping the signs of its elements, e.g.

[. . . πi πi+1 . . . πj−1 πj . . .]r
σ
i,j = [. . . πj πj−1 . . . πi+1 πi . . .].

In the case of sorting by sign–change reversals, we have to find the

reversal distance ρ(τσ1 , τ
σ
2 ) between two signed permutations τσ1 and τσ2 , or

between πσ = (τσ2 )
−1τσ1 and the positive identity permutation defined as

I+n = [+1 . . .+n]. It was shown by Knuth [58] in 1994 (see Exercise 5.1.4–

43) that at most n+1 sign–change reversals are needed to sort any signed

permutation to the positive identity permutation, for all n > 3, i.e.

max
πσ∈Bn

ρ(πσ, I) = n+ 1.

The path distance in the Reversal graphBn(R
σ) corresponds to the reversal

distance between two signed permutations. This means that its diameter

is n + 1 and the following permutations, written in one–line notation, are

at this maximum distance from the identity permutation I+n :

πσ =

{
[+n + (n− 1) . . .+ 1], if n is even,

[+2 + 1 + 3 + n + (n− 1) . . .+ 4], if n > 3 is odd.

In 2001, it was also shown by David Bader, Bernard Moret, and Mi

Yan [10] that the reversal distance could be calculated in linear time for

signed permutations.

The next subproblem here is how to reconstruct a sequence of reversals

which realizes the distance. Its solutions are far from unique. In 1994

it was shown by John Kececioglu and David Sankoff [45] that the prob-

lem is NP–hard for unsigned permutations. However, it is polynomial for

signed permutations as it was shown by Sridhar Hannenhalli and Pavel

Pevzner [38] in 1999. The 1.5–approximation algorithm for sorting un-

signed permutations was presented by David Christie [22] in 1998. One

of the most effective algorithms that sort signed permutations by reversals

was presented by Haim Kaplan and Elad Verbin [44] in 2003.
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An interesting problem related to sorting by reversals is the problem

of sorting by transpositions of long fragments which was considered by

Vineet Bafna and Pavel Pevzner [12] in 1998. Lower bounds on trans-

position distance between permutations are found and approximation al-

gorithms for sorting by transpositions are presented in this paper. Some

open problems in genome rearrangements are also discussed there. A nat-

ural generalization of sorting by transpositions is the problem of sorting by

block–interchanges which was considered by David Christie in his thesis

“Genome rearrangement problems” in 1998. In particular, he proved that

this problem in NP–hard. As one can see, genome rearrangement problems

have proved so interesting from a combinatorial point of view that the field

now belongs as much to mathematics as to biology.

One more interesting problem related to sorting by reversals is the prob-

lem of sorting permutations by the fixed–length reversals (k–reversals).

This problem is implicit in the popular puzzle TOP − SPINTM which

consists of a permutation of 20 numbered disks on an oval track, with a

turnstile capable of reversing a string of 4 consecutive disks. The goal is

to sort the disks to the identity permutation using reversals. The more

general problem, with permutations of n disks and a turnstile of size k

was considered and solved by Ting Chen and Steven Skiena [20]. Note

that sometimes it is impossible to sort permutation using only reversals of

certain length. For example, an odd length reversal does not change the

parity of the position of any element it acts on, so odd length reversals

cannot sort any permutation of the form π = [2 1 . . . n]. The authors gave

a complete description for all n and k of how many permutations of length

n can be sorted using only reversals of length k. In particular, it was shown

that O(n3/2) k-reversals suffice to transform any permutation to the iden-

tity permutation when k ≈ √
n. The number of connected components on

the corresponding Cayley graphs generated by the fixed–length reversals

was also discussed there. For instance, in the trivial case of n-reversals,

any permutation can be transformed only to its inverse permutation. Thus,

there are n!/2 connected components for the symmetric group Symn with

k = n > 2.
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Chapter 4

Further reading

Classical problems on Cayley graphs such as classification, isomorphism

and enumeration of Cayley graphs were reviewed by Ming–Yao Xu [80]

in 1996 and Cai Heng Li [62] in 2002. The last article is devoted to sur-

veying results, open problems and methods based on deep group theory,

including the finite simple group classification, and on combinatorial tech-

niques. It contains 121 references on the topics. Very good survey articles

on the classification problems were written by Laszlo Babai [5] in 1981

as well as presented in the book on “Topics in Algebraic Graph Theory”

published in 2004 [13]. Isomorphisms of Cayley graphs were considered in

the older classic paper by Laszlo Babai and Peter Frankl [8] in 1978 and

in the modern handbook by Laszlo Babai [6] in 1996. Much more on the

combinatorics and groups, including the useful list of references on this

topic, is given in Peter Cameron’s IPM Lecture Notes [18] on “Combina-

torics and Groups” published in 2004 and in Adalbert Kerber’s book [47]

on “Algebraic Combinatorics via Finite Group Actions” published in 1991.

The questions concerning eigenvalues, expanders and random walks in Cay-

ley graphs (which not mentioned in these notes) were considered by Alex

Lubotzky [64] in 1995.

There are survey papers on hamiltonian problem for graphs, Cayley

graphs and digraphs, presented by Dave Witte and Joseph Gallian [79]

in 1984, Ronald Gould [37] in 1991 and Stephen Curran and Joseph Gal-

lian [25] in 1996. In the last paper the main results are chronicled and

some open problems and conjectures are included. These surveys also con-

tain some material on related topics such as hamiltonian decompositions,
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hamiltonian–connected and pancyclic graphs and digraphs, as well as an

extensive bibliography of papers in the area. A short survey of various

results in hamiltonicity of Cayley graphs could be also found in the paper

by Igor Pak and Radoš Radoičić [68].

To get more information about Cayley graphs in computer science, I

would like to recommend two surveys by Sheldon Akers and Balakrishnan

Krishnamurthy [1], and S. Lakshmivarahan, Jung–Sing Jwo and Sudar-

shan Dhall [59] written in 1989 and 1993, correspondingly. In these papers

some properties of Cayley graphs such as edge–transitivity (line symme-

try), hierarchical structure (allowing recursive construction), high fault

tolerance and so on, are discussed. Another good reference on this sub-

ject is the report by Marie–Claude Heydemann [39] on “Cayley Graphs as

Interconnection Networks” where routing problems including connectivity,

diameter and loads of routing are considered for Cayley graphs and for

some generalizations of Cayley graphs.

Some combinatorial problems arising in computational molecular bi-

ology have connections with classical combinatorial problems on Cayley

graphs. For more details on such applied problems, I recommend the books

by Pavel Pevzner [69] written in 2000 and the book on “Current Topics in

Computational Molecular Biology” [74] with a good chapter on “Genome

rearrangement” by David Sankoff and Nadia El–Mabrouk. There is also a

very nice course “Algorithms for Molecular Biology” by Ron Shamir pre-

sented at his homepage [75]. One more recently published book could be

also recommended for reading. This is “Combinatorics of Genome Re-

arrangements” by Guillaume Fertin, Anthony Labarre, Irena Rusu, Eric

Tannier and Stephane Vialette [31] published in 2009.
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353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 617 619 631 641 643 647 653 659

Založba Univerze na Primorskem
Titov trg 4, SI-6000 Koper

www.hippocampus.si
zalozba@upr. si

Not for sale


	Some Problems on Cayley Graphs (Front Cover)
	Some Problems on Cayley Graphs (Title Page)
	Contents
	Introduction
	Chapter 1: Definitions, basic properties and examples
	1.1 Groups and graphs
	1.2 Symmetry and regularity of graphs
	Proposition 1.2.1
	Proposition 1.2.2
	Proposition 1.2.3
	Proposition 1.2.4

	1.3 Examples
	1.3.1 Some families of Cayley graphs
	1.3.2 Hamming graph: distance–transitive Cayley graph
	1.3.3 Johnson graph: distance–transitive not Cayley graph
	1.3.4 Kneser graph: when it is a Cayley graph
	1.3.5 Cayley graphs on the symmetric group


	Chapter 2: Hamiltonicity of Cayley graphs
	2.1 Hypercube graphs and a Gray code
	2.2 Combinatorial conditions for Hamiltonicity
	2.3 Lovasz and Babai conjectures
	Problem 2.3.1
	Conjecture 2.3.2
	Conjecture 2.3.3
	Conjecture 2.3.4
	Theorem 2.3.5
	Theorem 2.3.6
	Conjecture 2.3.7

	2.4 Hamiltonicity of Cayley graphs on finite groups
	Lemma 2.4.1
	Theorem 2.4.2
	Proof of Theorem 2.3.6

	2.5 Hamiltonicity of Cayley graphs on the symmetric group
	Theorem 2.5.1
	Theorem 2.5.2
	Theorem 2.5.3

	2.6 Hamiltonicity of the Pancake graph
	2.6.1 Hamiltonicity based on hierarchical structure
	2.6.2 The generating algorithm by Zaks

	2.7 Other cycles of the Pancake graph
	Theorem 2.7.1
	Theorem 2.7.2
	Theorem 2.7.3
	Theorem 2.7.4
	Lemma 2.7.5
	2.7.1 6–cycles of the Pancake graph
	2.7.2 7–cycles of the Pancake graph
	2.7.3 8–cycles of the Pancake graph
	Proof of Theorem 2.7.4
	Case 1: an 8–cycle within Pk has vertices from two copies of Pk−1
	Case 2: an 8–cycle within Pk has vertices from three copies of Pk−1
	Case 3: an 8–cycle within Pk has vertices from four copies of Pk−1


	Chapter 3: The diameter problem
	3.1 Diameter of Cayley graphs on abelian and non–abelian groups
	Theorem 3.1.1
	Theorem 3.1.2
	Conjecture 3.1.3
	Theorem 3.1.4

	3.2 Pancake problem
	Problem 3.2.1
	3.2.1 An algorithm by Gates and Papadimitrou
	The algorithm GP
	3.2.2 Upper bound on the diameter of the Pancake graph
	Theorem 3.2.2

	3.2.3 Lower bound on the diameter of the Pancake graph
	Theorem 3.2.3
	Claim 1.
	Claim 2.
	Claim 3.

	3.2.4 Improved bounds by Heydari and Sudborough
	Theorem 3.2.5
	Claim 1.
	Claim 2.
	Claim 3.
	Corollary 3.2.6

	3.2.5 Exact values on the diameter of the Pancake graph

	3.3 Burnt Pancake problem
	Problem 3.3.1

	3.4 Sorting by reversals

	Chapter 4: Further reading
	Bibliography


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002000d>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002000d>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /GRE <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002000d>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e000d>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




