
m
at

co
s-
10

Proceedings
of the 2010
Mini-Conference
on Applied
Theoretical
Computer
Science

University of Primorska Press

MATCOS-10
Proceedings of the 2010
Mini-Conference on Applied
Theoretical Computer Science

Edited by
Andrej Brodnik and Gábor Galambos

Reviewers and Programme Committee
Andrej Brodnik, University of Primorska

and University of Ljubljana, Slovenia (co-chair)
Gábor Galambos, University of Szeged,

Hungary (co-chair)
Gabriel Istrate, Universitatea Babes Bolyai,

Cluj, Romania
Miklós Krész, University of Szeged, Hungary
Gerhard Reinelt, Ruprecht-Karls-Universität,

Heidelberg, Germany
Borut Robič, University of Ljubljana, Slovenia
Magnus Steinby, University of Turku, Finland
Borut Žalik, University of Maribor, Slovenia

Organizing Committee
David Paš, chair
Iztok Cukjati
Milan Djordjević
Andrej Kramar
Tine Šukljan

Published by
University of Primorska Press
Titov trg 4, 6000 Koper
Koper 2011

Editor in Chief
Jonatan Vinkler

Managing Editor
Alen Ježovnik

c© 2011 University of Primorska Press

CIP – Kataložni zapis o publikaciji
Narodna in univerzitetna knjižnica, Ljubljana

004(082)(0.034.2)

MINI-Conference on Applied Theoretical Computer
Science (2010 ; Koper)

MATCOS-10 [Elektronski vir] : proceedings of the
2010 Mini-Conference on Applied Theoretical Computer
Science / edited by Andrej Brodnik and Gábor Galambos. –
El. knjiga. – Koper : University of Primorska Press, 2011

Način dostopa (URL):
http://www.hippocampus.si/ISBN/978-961-6832-10-6.pdf

ISBN 978-961-6832-10-6 (pdf)
1. Gl. stv. nasl. 2. Brodnik, Andrej
258820352

Preface

The collaboration between the University of Pri-
morska and the University of Szeged retrospect only
a short period. Even so, there is a couple of research
interest where the two groups can collaborate. The
MATCOS-10 (Mini-Conference on Applied Theoret-
ical Computer Science) conference started from the
idea that we collect those results, which we have in
our joint projects. We wanted to organize a mini-
conference where we expected papers from several
streams of operation research a broader. We invited
papers, which are dealing with those methods from
the theoretical computer science, which have been
integrated into real world applications. Practical so-
lutions for NP-hard problems, algorithmic oriented AI
and data mining solutions, new models and methods
in system biology and bioinformatics, automata the-
ory solutions in software and hardware verification,
prospective new models of computation and future
computer architecture are those topics which were
preferred in the picking.
We had also a second aim with this conference: we
wanted to give a chance for the young researchers to
lecture on their results. Therefore we organized a spe-
cial Student Session. We encouraged regular and PhD
students to take part on this conference in order to
get the first impression about the flavour of a confer-
ence.
The MATCOS-10 conference was held on October 13–
14, 2010 at the University of Primorska in Koper, in
conjunction with the 13th Multi-Conference on In-
formation Society, October 11–15, 2010, Ljubljana,
Slovenia.
In response of call of papers we received 38 submis-
sions. Each submission was reviewed by at least two
referees. Based on the reviews, the Program Commit-
tee selected 23 papers for presentation in these pro-
ceedings. In addition to the selected papers, András
Recski from the TU Budapest gave an invited talk on
‘Applications of Combinatorics in Statics.’
We used the EasyChair system to manage the submis-
sions. Thanks to David Paš, chair of the Organizing
Committee for maintaining the on-line background of
the conference. We are also grateful to Miklós Krész,
who – besides giving a great activity in the Organiz-
ing Committee – managed the homepage of the con-
ference.
Having elated from the success of the MATCOS-10
we decided to organize the conference regularly.
See you on the next MATCOS conference in Szeged!

Andrej Brodnik and Gábor Galambos

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Invited Paper

Rigidity of Frameworks: Applications
of Combinatorial Optimization to Statics

András Recski · 1

Student Papers

Succinct Data Structures for Dynamic Strings
Tine Šukljan · 5

Propagation Algorithms for Protein Classification
András Bóta · 9

Optimal and Reliable Covering of Planar Objects
with Circles
Endre Palatinus · 15

Truth-Teller-Liar Puzzles – A Genetic Algorithm
Approach (with Tuning and Statistics)
Attila Tanyi · 19

Heuristics for the Multiple Depot Vehicle Scheduling
Problem
Balázs Dávid · 23

Bayesian Games on a Maxmin Network Router
Grigorios G. Anagnostopoulos · 29

An Extensible Probe Architecture for Network
Protocol Performance Measurement
David Božič · 35

Detection and Visualization of Visible Surfaces
Danijel Žlaus · 41

Efficient Approach for Visualization of Large
Cosmological Particle Datasets
Niko Lukač · 45

Regular Papers

Computing the Longest Common Subsequence of Two
Strings When One of Them is Run-Length Encoded
Shegufta Bakht Ahsan, Tanaeem M. Moosa,
and M. Sohel Rahman · 49

Prefix Transpositions on Binary and Ternary Strings
Amit Kumar Dutta, Masud Hasan, and M. Sohel
Rahman · 53

Embedding of Complete and Nearly Complete Binary
Trees into Hypercubes
Aleksander Vesel · 57

Information Set-Distance
Joel Ratsaby · 61

Better Bounds for the Bin Packing Problem with the
‘Largest Item in the Bottom’ Constraint
György Dósa, Zsolt Tuza, and Deshi Ye · 65

Semi-on-Line Bin Packing: An Overview and an
Improved Lower Bound
János Balogh and József Békési · 69

Determining the Expected Runtime of an Exact
Graph Coloring Algorithm
Zoltán Ádám Mann and Anikó Szajkó · 75

Speeding up Exact Cover Algorithms by
Preprocessing and Parallel Computation
Sándor Szabó · 85

Community Detection and Its Use in Real Graphs
András Bóta, László Csizmadia,
and András Pluhár · 95

Greedy Heuristics for Driver Scheduling and
Rostering
Viktor Árgilán, Csaba Kemény, Gábor Pongrácz,
Attila Tóth, and Balázs Dávid · 101

A Note on Context-Free Grammars with Rewriting
Restrictions
Zsolt Gazdag · 109

Using Multigraphs in the Shallow Transfer Machine
Translation
Jernej Vičič · 113

Model Checking of the Slotted CSMA/CA MAC
Protocol of the IEEE 802.15.4 Standard
Zoltán L. Németh · 121

Experiment-Based Definitions for Electronic
Exam Systems
Andrea Huszti · 127

iii

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

iv

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Rigidity of Frameworks:
Applications of Combinatorial Optimization to Statics

András Recski
Budapest University of Technology

and Economics
H-1521 Budapest, Hungary

+36-1-4632585

recski@cs.bme.hu

ABSTRACT
The survey presents various applications of graphs and matroids
to the rigidity of classical and tensegrity frameworks.

Categories and Subject Descriptors
F.2.2 Computations on Discrete Structures

General Terms
Algorithms

Keywords
Graphs, matroids, frameworks, rigidity, structural topology

1. INTRODUCTION
Apart from the last section, we shall consider only frameworks,
composed of rigid rods and rotatable joints. Such a framework
may be rigid or nonrigid, see Figure 1. Rigidity depends on the
dimension of the space as well: the framework of Figure 2 is rigid
in the plane but not in the space. A nonrigid framework need not
necessarily be a “mechanism”, rigidity also excludes
“infinitesimal” motions like those at Figure 3. Hence our
“rigidity” is called “infinitesimal rigidity” by most authors.

 Figure 1 Figure 2 Figure 3

2. RIGIDITY OF A GIVEN FRAMEWORK
Deciding rigidity of a framework F can be formulated as a
problem of linear algebra. Rigidity of a rod eij, connecting joints vi
and vj

 with respective coordinates (xi, yi,…) and (xj, yj,....) means
that

(xi – xj)2 + (yi – yj)2 + … = constant.

Its derivative is

(xi – xj)dxi/dt + (xj – xi)dxj/dxt +(yi – yj)dyi/dt + (yj – yi)dyj/dt + … =
0.

All these equations together give AF u=0, where the number of
rows of the matrix AF is the number e of the rods, the number of
columns of AF is the number v of the joints multiplied by the
dimension d of the space and u=(dx1/dt, dx2/dt, ….., dy1/dt,
dy2/dt, …..)T. The congruent motions of the d-dimensional space
(which form a subspace of dimension d(d+1)/2) are all the
solutions of this system. A framework F will be called rigid in the
d-dimensional space if there are no other solutions, that is, if the
rank of AF is vd – d(d+1)/2.

3. DIFFERENT FRAMEWORKS WITH
ISOMORPHIC GRAPHS
A framework F can be described by a graph G(F) with v vertices
and e edges. However, one of the planar frameworks of Figure 4
and one of the 3-dimensional frameworks of Figure 5 are rigid,
the other two are not, showing that G(F) alone determines the
zero-nonzero pattern of the matrix AF only, but not its rank,
hence not the rigidity of F either. Clearly, if two determinants
have the same zero-nonzero pattern, one of them may vanish if
certain entries cancel out each other.

 Figure 4 Figure 5

4. WHAT CAN COMBINATORIALISTS DO
HERE?
While the examples of Section 3 show that one cannot expect to
decide rigidity from the graph alone, combinatorial methods can
still help in two cases: either if the framework is “very

1

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

symmetric”, see Sections 7-8 below, or if it has “no regularity at
all”. This latter means that no cancellation may arise among the
entries of AF unless it is reflected by the structure of G(F).
Formally we call a graph G (not the framework!) generic rigid in
dimension d if there exists a rigid d-dimensional framework F
with G(F)=G. Alternatively, G is generic rigid in dimension d if
and only if realizing it in the d-dimensional space so that the
coordinates of the joints are algebraically independent over the
field of the rational numbers, the resulting framework is rigid. For
example, the graphs of the frameworks of Figures 4 and 5 are
generic rigid (in 2- and 3-dimension, respectively) while the graph
of the second framework of Figure 1 is not.

5. GENERIC RIGID GRAPHS IN THE
PLANE
Deciding generic rigidity of any graph in any dimension is in NP
(if there are rigid realizations, there are some with “small” integer
coordinates as well). The problem is in P for dimension 2 and its
status is unknown for dimension ≥ 3. For simplicity we restrict
ourselves to minimum generic rigid graphs in dimension 2. Then,
with the notation of Section 2, e = 2v – 3 and clearly e’ ≤ 2v’ – 3
for any “subsystem” with e’ rods among v’ joints to avoid
situations like that of Figure 6 where a part of the system is
“overbraced”. This stronger necessary condition, known to
Maxwell [14] already in 1864, was proved to be sufficient (Laman
[12]). This leads to a polynomial algorithm by observing (Lovász
and Yemini, [13]) that the necessary and sufficient condition was
equivalent to the property that doubling any edge of the graph the
resulting graph with 2v–2 edges is the union of two trees. This
condition can be checked in polynomial time, using the matroid
partition algorithm of Edmonds [9]. The analogue of Maxwell’s
condition in dimension 3 can also be reformulated with tree
decompositions (Recski [15]) but this is only necessary. Figure 7
shows the smallest counterexample.

Figure 6 Figure 7

6. RECONSTRUCTION OF POLYHEDRA
Apart from obvious applicability in structural engineering, rigidity
has an interesting relation to pattern reconstruction.

Figure 8 Figure 9

Suppose we wish to decide from a 2-dimensional drawing
whether it is the projection of a polyhedron. The reason of a
negative answer may follow from the graph of the drawing already
(drawings like those in Figure 8 are well known) but sometimes
the answer is positive only if some additional conditions are met
(like the three dotted lines meet at the same point in Figure 9).
Under some conditions a drawing arises as the projection of a 3-
dimensional polyhedron if and only if it is nonrigid as a 2-
dimensional framework. For example, Figure 10 shows that the
second framework of Figure 4 is rigid while the first one is not

Figure 10

7. RIGIDITY OF SQUARE GRIDS
Another area of combinatorial applications arises if we restrict our
attention to “very regular” frameworks. For example, the k X l
square grid as a planar framework requires at least k + l – 1
diagonal rods to become rigid and the minimum systems of such
diagonals correspond to the spanning trees of the complete
bipartite graph Kk,l with k + l vertices (Bolker and Crapo, [5]).
For example, Figure 11 shows a 3 X 3 grid with a possible
deformation – the corresponding graph is disconnected.

Figure 11

8. RIGIDITY OF A 1-STORY BUILDING
Consider a 1-story building, with the vertical bars fixed to the
earth via joints. If each of the four external vertical walls consists
of a diagonal then the four corners of the roof become fixed.
Hence questions related to the rigidity of a one-story building are
reduced (Bolker and Crapo, [5]) to those related to the rigidity of
a 2-dimensional square grid of size k X l where the corners are
pinned down. Then the minimum number of necessary diagonal
rods for infinitesimal rigidity was proved to be k + l – 2 (Bolker
and Crapo, [5]) and the minimum systems correspond to
asymmetric 2-component forests (Crapo, [7]). A 2-component
forest is asymmetric if the ratio of the cardinalities of the
bipartition sets in the two components is different from k:l. For
example, parts (a) and (b) of Figure 12 show two systems with the
corresponding 2-component forests. The second system is
nonrigid, an infinitesimal deformation is shown in part (c) of the
figure. Observe that the points u, v, w are collinear in Figure
12(b), this can always be achieved after appropriate permutations
of the row set and of the column set, if the 2-component forest is

2

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

symmetric.

Figure 12

9. TENSEGRITY FRAMEWORKS
Since real life rods are less reliable against compression than
against tension, we might prefer using more diagonal rods but
under tension only. In order to study such questions, the concept
of tensegrity frameworks has been introduced: the elements
connecting the joints may be rods (which are rigid both under
tension and compression), cables (used under tension only) and
possibly struts as well (used under compression only). Then the
diagonal tensegrity elements will correspond to directed edges and
a collection of such elements will rigidify the square grid if and
only if the corresponding subgraph is strongly connected (Baglivo
and Graver, [2]), The corresponding questions for 1-story
buildings are more complicated and need various tools of
matching theory and network flow techniques (Chakravarty et al,
[6], Recski and Schwärzler, [20]). More recently, some of the
results described in Section 5 have also been generalized for
tensegrity frameworks (Jordán et al,.[11], Recski, [21], Recski and
Shai, [22]).

10. ACKNOWLEDGEMENTS
The support of the Hungarian National Science Foundation and
the National Office for Research and Technology (Grant number
OTKA 67651) is gratefully acknowledged.

11. REFERENCES
[1] L. Asimow and B. Roth, 1978-79. The rigidity of graphs,

Trans. Amer. Math. Soc. 245, 279-289 (Part I) and J. Math.
Anal. Appl. 68, 171-190 (Part II).

[2] J. A. Baglivo and J. E. Graver, 1983. Incidence and
symmetry in design and architecture, Cambridge University
Press, Cambridge .

[3] E. Bolker, 1977. Bracing grids of cubes, Env. Plan. B, 4,
157-172.

[4] E. Bolker, 1979. Bracing rectangular frameworks II. SIAM J.
Appl. Math. 36, 491-508.

[5] E. Bolker and H. Crapo, 1979. Bracing rectangular
frameworks, SIAM J. Appl. Math. 36, 473-490.

[6] N. Chakravarty, G. Holman, S. McGuinness and A. Recski,
1986. One-story buildings as tensegrity frameworks, Struct.
Topology, 12, 11-18.

[7] H. Crapo, 1977. More on the bracing of one-story buildings,
Env. Plan. B, 4, 153-156.

[8] H. Crapo, 1979. Structural rigidity, Struct. Topology 1, 26-
45.

[9] J. Edmonds, 1968. Matroid partition, Math. of the Decision
Sciences, Part I., Lectures in Appl. Math., 11, 335-345.

[10] G. Hetyei, 1964. On covering by 2X1 rectangles, Pécsi
Tanárképző Főisk.Közl. 151-168.

[11] T. Jordán, A. Recski and Z. Szabadka, 2009. Rigid tensegrity
labelling of graphs, European J. of Combinatorics 30, 1887-
1895.

[12] G. Laman, 1970. On graphs and rigidity of plane skeletal
structures, J. of Eng. Math. 4, 331-340.

[13] L. Lovász and Y. Yemini, 1982. On generic rigidity in the
plane, SIAM J. Alg. Discrete Methods, 3, 91-98.

[14] J. C. Maxwell, 1864. On the calculation of the equilibrum
and stiffness of frames, Philos. Mag. (4), 27, 294-299.

[15] A. Recski, 1984. A network theory approach to the rigidity
of skeletal structures II. Laman’s theorem and topological
formulae, Discrete Applied Math. 8, 63-68.

[16] A. Recski, 1987. Elementary strong maps of graphic
matroids, Graphs and Combinatorics, 3, 379-382.

[17] A. Recski, 1988/89. Bracing cubic grids – a necessary
condition, Discrete Math., 73, 199-206.

[18] A. Recski, 1989. Matroid theory and its applications in
electric network theory and in statics, Springer, Berlin-
Heidelberg-New York; Akadémiai Kiadó, Budapest.

[19] A. Recski, 1991. One-story buildings as tensegrity
frameworks II, Struct. Topology 17, 43-52.

[20] A. Recski and W. Schwärzler, 1992. One-story buildings as
tensegrity frameworks III, Discrete Applied Math., 39, 137-
146.

[21] A. Recski, 2008. Combinatorial conditions for the rigidity of
tensegrity frameworks, Bolyai Society Mathematical Studies
17, 163-177.

[22] A. Recski and O. Shai, 2010.Tensegrity frameworks in the
one-dimensional space, European Journal of Combinatorics
31, 1072-1079.

[23] B. Roth and W- Whiteley, 1981. Tensegrity frameworks,
Trans. Amer. Math. Soc. 265, 419-446.

[24] T. Tarnai, 1980. Simultaneous static and kinematic
indeterminacy of space trusses with cyclic symmetry, Int. J.
Solids and Structures, 16, 347-359.

[25] W. Whiteley, 1988. The union of matroids and the rigidity
of frameworks, SIAM J. Discrete Math. 9, 237-255.

3

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

4

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Succinct data structures for dynamic strings

Tine Sukljan
FAMNIT

Univerza na Primorskem
Koper, Slovenia

tine.sukljan@upr.si

ABSTRACT
The biggest problem of full-text indexes is their space con-
sumption. In the last few years many efforts has been put
in the research of these indexes. At first the idea was to ex-
ploit the compressibility of the text, so that the size of the
index would be more efficient. Recently this idea even more
evolved in the so called self-indexes, which stores enough
information to replace the original text. This idea of an in-
dex which takes space close to that of the compressed text,
replaces it and provides fast search over it was the source
for many new research done in the last few years. In this
article we present the most recent result done in this area of
research.

1. INTRODUCTION
Succinct data structures provide solutions to reduce the stor-
age cost of modern applications that process large data sets,
such as web search engines, geographic information systems,
and bioinformatics applications. First proposed by Jacobson
[8], the aim is to encode a data structure using space close
to the information-theoretic lower bound, while supporting
efficient navigation operations in them.

We are given a sequence S of length n over an alphabet
Σ of size σ. We can use operation access(S, i) to read a
symbol at position i of the sequence S (0 ≤ i < n). Given
the specified parameters we want to support two more query
operation for a symbol c ∈ Σ [3]:

• selectc(S, j): return the position of the jth occur-
rence of symbol c, or −1 if that occurence does not
exists;

• rankc(S, p): count how many occurrences are found in
S[0, p− 1].

In many situations only retrieving data (even though effi-
ciently) is not enough, as data in these situations are up-

dated frequently. In this case two additional operations are
desired:

• insertc(S, i): insert character c between S[i − 1] and
S[i];

• delete(S, i): delete S[i] from S.

2. RANK AND SELECT OPERATIONS ON
DYNAMIC COMPRESSED SEQUENCES

Gonzalez et al. in [3] presented a data structure with nH0+
o(n log σ) bits of space and O(logn(1+ log σ

log logn
)) worst-case

time.

We first present a data structure for the Collection of Search-
able Partial Sums with Indels (CSPSI) problem, which will
be used later in the article. The problem consists of σ se-
quences C = S1, . . . , Sσ of nonnegative integers sji q≤j≤σ,1≤i≤n,

each of O(logn) bits with the following operations required:

• sum(C, j, i) is
∑i

l=1 s
j
l ;

• search(C, j, y) is the smallest i
′
such that sum(C, j, i) ≥

y;

• update(C, j, i, x) updates sji to sji + x;

• insert(C, i) inserts 0 between sji−1 and sji for all 1 ≤
j ≤ σ;

• delete(C, i) deletes sji from the sequence Sj for all
1 ≤ j ≤ σ. To perform delete(C, i) it must hold
sji = 0 for all 1 ≤ j ≤ σ.

We now present the data structure that Gonzalez et al. in-
troduced in [3]. They construct a red-black tree over C. Each
leaf contains a non-empty superblock of size from 1

2
log2 n to

2 log2 n bits. The leftmost leaf contains s11 . . . s
1
b1
s21 . . . s

2
b1

. . .

sσ1 . . . sσb1 , the second s1b1+1 . . . s
1
b2
s2b1+1 . . . s

2
b2

. . . sσb1+1 . . . s
σ
b2

and so on. The size of the leaves are variable but bounded.
b1, b2, . . . are such that 1

2
log2 n ≤ σkb1, σk(b2 − b1), . . . ≤

2 log2 n. Each internal node v stores two additional type of
counters, p(v) and rj(v)1≤j≤σ such that:

• p(v) is the number of positions stored in the left sub-
tree (for any sequence);

5

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

• rj(v) is the sum of the integers in the left subtree for
sequence Sj .

They further divided the superblock in the leaves into blocks
of
√
log n bits. They stored these blocks in a linked list so

that it’s possible to can scan a leaf block by block. In the
paper ([3], Section 2) they describe how to compute the
operations required by CSPSI using the data structure we
just described. Their result is the following theorem:

Theorem 1. The Collection of Searchable Partial Sums
with Indels problem with σ sequences of n numbers of k bits
can bi solved, in a RAM machine of w = O(log n) bits, using
σkn(1 + O(1√

logn
+ σ

logn
)) bits of space, supporting all the

operations in O(σ + log n) worst-case time. Note that, if
σ = O(log n) the space is O(σkn) and the time is O(logn).

We will omit the details because of space reasons.

We will now look at how the can to solve the rank/select
problem with CSPSI. We construct the red-black tree over
the original text S. Each leaf contains a non-empty su-
perblock. Each internal node has counters p(v) and r(v).
We call a superblock ob size less than log2 n sparse. Oper-
ations insert and delete will ensure that no two consecutive
sparse superblock exists. Because of this rule there are at
most 1 + 2n log σ

log2 n
superblocks. For each superblock we man-

tain sji , the number of occurrences of symbol j in superblock
i, for 1 ≤ j ≤ σ. We store all these sequences of numbers us-
ing CSPSI as we described earlier. The partial sums operate
in O(log n) worst-case time.

We show now how to compute access(S, i) and insertc(S, i).
The other operations are similar and explained in more de-
tails in [3].

access(S, i): We traverse the tree to find the leaf containing
the i-th position. We start with sb ← 1 and pos ← i. if
p(v) ≥ pos we enter the left subtree, otherwise we enter
the left subtree, otherwise we enter the right subtree with
sb ← sb + r(v) and pos ← pos − p(v). We reach the leaf
that contains the i-th position in O(log n) time. Then we
directly access the pos-th symbol of superblock sb.

insertc(S, i): We obtain sb and pos just like in the access
query, except that we start with pos ← i − 1, so as to in-
sert right after position i − 1. Then, if superblock sb con-
tains room for one more symbol, we insert c right after the
pos-th position of sb, by shifting the symbols through the
blocks as explained. If the insertion causes an overflow in
the last block of sb, we simply add a new block at the end
of the linked list to hold the trailing bits. We also carry out
update(C, c, sb, 1) and retraverse the path from the root to
sb adding 1 to p(v) each time we go left from v. In this case
we finish in O(log n) time.

If, instead, the superblock is full, we cannot carry out the
insertion yet. We first move one symbol to the previous
superblock (creating a new one if this is not possible): We

first delete(T, d) the first symbol c
′
from block sb (the global

position of c is d = i − pos), and this cannot cause an un-

derflow of sb. Now, we check how many symbols does su-
perblock sb − 1 have (this is easy by subtracting the pos
numbers corresponding to accessing blocks sb − 1 and sb).
If superblock sb − 1 can hold one more symbol, we insert

the removed symbol c
′
at the end of superblock sb−1. This

is done by calling insertc′ (T, d), a recursive invocation that
now will arrive at block sb− 1 and will not overflow it (thus
no further recursion will occur).

If superblock sb−1 is also full or does not exist, then we are
entitled to create a sparse superblock between sb−1 and sb,
without breaking the invariant on sparse superblocks. We

create such an empty superblock and insert symbol c
′
into it,

using the following procedure: We retraverse the path from
the root to sb, updating r(v) to r(v) + 1 each time we go
left from v. When we arrive again at leaf sb we create a new
node μ with r(μ) = 1 and p(μ) = 1. Its left child is the new

empty superblock, where the single symbol c
′
is inserted,

and its right child is sb. We also execute insert(C, sb) and

update(C, sb, c
′
, 1).

After creating μ, we must check if we need to rebalance the
tree. If it is needed, it can be done with O(.) rotations

and O(log n) redâĂŞblack tag updates. After a rotation we

need to update r()̇ and p(.) only for one tree node. These
updates can be done in constant time. Now that we have
finally made room to carry out the original insertion, we re-
run insertc(T, i) and it will not overflow again. The whole
insert operation takes O(log n) time.

To compress we divide every single superblock into segments
representing� 1

2
logσ n� original simbols from S. We then rep-

resent each segment using the (c, o)-pair encoding of Ferrag-

ina et al. [1]. For alphabet larger than σ = Ω(
√
logn

log logn
) we

use a ρ-ary wavelet tree [1] over T, where ρ = Θ(
√
logn

log logn
).

On each level we store a sequence over alphabet of size ρ,
which are handled as described above. This way we get:

Theorem 2. Given a text S of length n over an alphabet
of size σ and zero-order entropy H0(S), the Dynamic Se-
quence with Indels problem under the RAM model with word
size w = Ω(log n) can be solved using nH0(S) + O(n log σ√

logn
)

bits of space, supporting queries access, rank, select, insert
and delete in O(log n(1 + log σ

log logn
)) worst-case time.

3. IMPROVED RANK AND SELECT ON DY-
NAMIC STRINGS

Recently He et al. in [6] managed to improve the result of
Gonzalez and Navarro. They followed the same idea, but
instead of using red-black trees, they used B-tree. Firstly
we need to introduce their modification to CSPSI solution.
Then we will look at their result.

We construct a B-tree over the collection C. Let L =
	 �logn�2
log�logn�
. Each leaf of the tree stores a superblock of size

between L/2 and 2L bits. Each superblock stores the same
number of integers from each sequence in C. More precisely,
the content of the leftmost leaf is s11 . . . s

1
b1
s21 . . . s

2
b1

. . . sσ1 . . . sσb1 ,

the second s1b1+1 . . . s
1
b2
s2b1+1 . . . s

2
b2

. . . sσb1+1 . . . s
σ
b2

and so on.

6

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

b1, b2, . . . satisfy the following conditions because of require-
ment on the sizes of superblocks: L/2 ≤ b1kσ ≤ 2L,L/2 ≤
(b2b1)kσ ≤ 2L, . . . Every internal node v stores some addi-
tional counters (let h be the number of children of v):

• A sequence P (v)[1..h], in which P (v)[i] is the number
of positions stored in the leaves of the subtree rooted at
the i-th child of v for any sequence in C (the naumber
is the same for every sequence in C);

• A sequence Rj(v)[1..h] for each j = 1, 2, . . . d, in which
Rj(v)[i] is the sum of the integers from sequence Sj

that are stored in the leaves of the subtree rooted at
the i-th child of v.

We additionally divide each superblock into blocks of 		log n
 23

bits each.

The described data structure supports sum, search an up-
date operations in O(logn

log logn
) time and operations insert and

delete in O(logn
log logn

) amortized time. Proofs are omitted but

can be found in [6], Section 3.

We can now turn our interest in the rank/select problem.
We construct a B-tree over S. If a superblock has fewer
than L bits we called it skinny. The string S is initially
partitioned into substrings that are stored in superblocks.
We number the superblocks from left to right, so that i-th
superblock stores i-th substring. There must not exist two
consecutive skinny superblocks (this way we bound the num-
bers of leaves), which gives us the upper bound of O(n log σ

L
)

leaves.

He et al. chose b =
√
log n. They additionally required that

the degree of each internal node is between b and 2b. For
each internal node v we need to store the following data
structures (let h be the number of children of v):

• A sequence U(v)[1..h], in which U(v)[i] is the number
of superblocks contained in the leaves of the subtree
rooted at the i-th child of v;

• A sequence I(v)[1..h], in which I(v)[i] stores the num-
ber of characters stored in the leaves of the subtree
rooted at the i-th child of v.

Finally for each character c, we construct an integer se-
quence Ec[1..t] in which Ec[i] stores the number of occur-
rences of character c in superblock i. We create σ sequences
this way, and we construct a CSPSI structure, E, for them.

Following the approach of Ferragina et al. in [1], He et. al
managed to get the following result:

Theorem 3. Under the word RAM model with word size
w = Ω(log n), a string S of length n over an alphabet of size
σ = O(

√
log n) can be representd using nH0+O(n log σ log logn√

logn
)+

O(w) bits to support access, rank, select, insert and delete
in O(logn

log logn
) time.

Note that a bit vector of length n can be represented using
nH0+o(n)+O(w) bits and still supporting all the operations
in O(logn

log logn
) time.

4. DYNAMIZING SUCCINCT DATA STRUC-
TURES

Gupta et al. in [5] presented a framework to dynamize suc-
cinct data structures. With their framework it is possible
to dynamize most succinct data structures for dictionaries,
trees, and text collections. We will now present the idea
behind this framework and how it compares with other data
structures.

The construction of their data structure is based on some
static data structures which we will only list:

• For a bitvector (i.e. |Σ| = 2) of length n, there ex-
ists a static structure D called RRR solving the bit
dictionary problem supporting rank, select and access
queries in O(1) time using nH0 +O(n log log n/ log n)
bits of space, while taking O(n) time to construct [10].

• For a text S of length n drawn from alphabet Σ, there
exists a astatic data structure D called wavelet tree
solving the text dictionary problem supporting rank,
select and access queries inO(log |Σ|) time, using nH0+
o(n log |Σ|) bits of space, while taking O(nH0) time to
construct ([4]).

• For a text S of length n drawn from alphabet Σ, there
exists a astatic data structure D called GMR that
solves the text dictionary problem supporting select
queries in O(1) time and rank and access queries in
O(log log |Σ|) time using n log |Σ|+ o(n log |Σ|) bits of
space, while taking O(n log n) time to construct ([2]).

• Let A[1..t] be a nonnegative integer array such that∑
i A[i] ≤ n. There exists a data structure PS (prefix-

sum) on A that supports sum and findsum inO(log log n)
time using O(t log n) bits of space and can be con-
structed in O(t) time.

• A Weight Balanced B-tree (WBB) is a B-tree defined
with a weight-balance condition. This means that for
any node v at level i, the number of leaves in v’s
subtree is between 1/2bi + 1 and 2bi − 1, where b is
the fanout factor. Insertion and deleteion can be per-
formed in amortized O(logb n) time while maintaining
the condition ([10, 7, 5]).

Gupta’s solution is based on three main data structures:

• BitIndel bitvector supporting insertion and deletion;

• StaticRankSelect static text dictionary structure su-
porting rank, select and access on a text T ;

• onlyX non-succinct dynamic text dictionary.

StaticRankSelect is used to maintain the original text T (we
can use wavelet tree or GMR data structure). We need to
upgrade it, so it can support insertx(i) (insert a symbol x /∈

7

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

space(bits) access, rank and select insert and delete

Gonzalez et al. [3] nH0 + o(n) log σ O(log n(log σ
log logn

+ 1)) O(log n(log σ
log logn

+ 1))

He et al. [6] nH0 + o(n) log σ O(logn
log logn

(log σ
log logn

+ 1)) O(logn
log logn

(log σ
log logn

+ 1))

Gupta et al. [5] n log σ + log σ(o(n) +O(1)) log log n O logε n amortized

Table 1: A comparison of the results [6]

Σ at position S[i]) and delete(i) (deletes symbol at position
S[i]) and we will call this new structure inX. We use onlyX
to keep track of newly inserted symbols (N). We merge
the updates in StaticRankSelect every O(n1−ε log n) update
operations. OnlyX cannot contain more than O(n1−ε log n)
elements, so we can maintain it using O(n1−ε log2 n) = o(n)
bits. Merging N with T takes O(n log n) time, so we get an
amortized O(nε) time for updating these data structures.

The final data structure is comprised of two main parts:
inX and onlyX. After every O(n1−ε log n) updates onlyX is
merged into the original text S. The cost can be amortized
to O(nε) per update. The StaticRankSelect structure on S
takes n log |Σ| + o(n log |Σ|) bits of space. The other struc-
tures takes o(n) bits of space ([5]).

We need to augment the above two structures with a few
additional BitIndel structures. For each symbol c, we main-
tain a bitvector Ic such that Ic[i] = 1 if and only if the i-th
occurrence of c is stored in the onlyX structure. We now
describe how to support rank and select operations with the
above structures.

rankc(i): We first find j = inX.rankc(i) and k = inX.rankx(i),
and return j + only.rankc(k).

selectc(i): We first find whether the i-th occurrence of
c belongs to the inX structure or the onlyX structure. If
Ic[i] = 0, this means that the i-th item is one of the original
symbols from S; we query inX.selectc(j) in this case, where
j = Ic.rank0(i). Otherwise we compute j = Ic.rank1(i) to
translate i to it’s corresponding position among new sym-

bols. Then we compute j
′
= onlyX.selectc(j), and return

inX.selectx(j
′
).

Gupta et al. in [5] showed how to manatina Is during up-
dates, and the space complexity of BitIndel data structures
and proved the following theorem:

Theorem 4. Given a text S of length n drawn from an
alphabet Σ, we create a data structure using GMR that takes
n log |Σ|+o(n log |Σ|)+o(n) bits of space and supports rank,
select and access in O(log log n+log log |Σ|) time and insert
and delete updates in O(nε) time.

5. CONCLUSION
We presented some recent research done in the field of suc-
cinct data structures for text with the support for update
operations. Gonzalez et al. ware the first to manage to
get the operations in O(log n(1 + log σ

log logn
)) time with only

nH0 + o(n) log σ bits. Quickly after He improved their re-
sult with a slight modification of this algorithm, by replacing

the red-black tree used by Gonzalez with a B-tree. They cut
the wort-case time complexity by a log logn factor. Gupta
et al. took a totally different direction and managed to get
a better query time complexity but sacrificed update times.
Their solution is designed under the assumption that the
string is queried frequently but updated infrequently.

The research of the succinct data structures has got a lot of
momentum in the last few years [9] and it produced surpris-
ing results. The most successful indexes are able to obtain
almost optimal space and search time.

6. REFERENCES
[1] P. Ferragina, G. Manzini, and V. Mäkinen.

Compressed representations of sequences and full-text
indexes. ACM Transactions on . . . , Jan 2007.

[2] A. Golynski, J. Munro, and S. Rao. Rank/select
operations on large alphabets: a tool for text indexing.
Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pages 368–373,
2006.

[3] R. González and G. Navarro. Rank/select on dynamic
compressed sequences and applications. Theoretical
Computer Science, Jan 2009.

[4] R. Grossi, A. Gupta, and J. Vitter. High-order
entropy-compressed text indexes. . . . of the fourteenth
annual ACM-SIAM . . . , Jan 2003.

[5] A. Gupta, W. Hon, R. Shah, and J. Vitter. A
framework for dynamizing succinct data
structuresâŃ ↪E(2008). works.bepress.com.

[6] M. He and J. I. Munro. Succinct representations of
dynamic strings. arXiv, cs.DS, May 2010.

[7] W. Hon, K. Sadakane, and W. Sung. Succinct data
structures for searchable partial sums. Algorithms and
Computation, pages 505–516, 2003.

[8] G. Jacobson. Space-efficient static trees and graphs.
Foundations of Computer Science, 1989., 30th Annual
Symposium on, pages 549–554, 2002.

[9] G. Navarro and V. Mäkinen. Compressed full-text
indexes. ACM Computing Surveys (CSUR), Jan 2007.

[10] R. Raman, V. Raman, and S. Satti. Succinct
indexable dictionaries with applications to encoding
k-ary trees, prefix sums and multisets. ACM
Transactions on Algorithms (TALG), 3(4):43, 2007.

8

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Propagation Algorithms for Protein Classification

András Bóta
Institute of Informatics

University of Szeged, Hungary
bandras@inf.u-szeged.hu

ABSTRACT
In this paper we propose a simple propagation algorithm for
protein classification. It is similar to existing label prop-
agation algorithms, with some important differences. The
method is general so it can be used for other purposes as
well, although in this paper it is used solely for solving a bi-
nary classification problem, and its results are evaluated us-
ing ROC analysis. It performs in reasonable time, and pro-
duces fairly good results. We have used various databases
for testing purposes including SCOP40 and 3PGK.

General Terms
Classification

Keywords
label propagation, protein classification, binary classifica-
tion, ROC analysis

Supervisor
Miklós Krész1

1. INTRODUCTION
The categorization of genes and proteins is an important
field of research, and a variety of methods and algorithms
has been tried to solve this problem, starting from simple
pairwise comparison to the more advanced methods of ar-
tificial intelligence, like support vector machines or hidden
Markov models. A database of protein sequences can be ef-
fectively represented as a network, in which edges represent
some sort of similarity. This similarity network is known
a priori and forms the basis of the classification process.
On the other hand, similarity networks are usually large,
so only fast algorithms are able to tackle with the problem.
Label propagation algorithms originate from graph theory,

1Hungary, University of Szeged, Department of Applied In-
formatics, contact: kresz@jgypk.u-szeged.hu

and have the advantage of using the entire network, rep-
resented as a similarity matrix, for the process of classifica-
tion. Propagation algorithms are in average faster then their
more advanced opponents, and can produce reliable results.
There are various propagation methods currently in the field
of bioinformatics [1, 2, 5, 10]. Our method is in many ways
similar to these methods, but far more simpler than them,
still producing good results.

2. PROTEIN CLASSIFICATION METHODS
AND EVALUATION

In this chapter we will give a short introduction to protein
classification, as well as ROC analysis, which is a widely
accepted measurement method in bioinformatics. We will
also discuss a few propagation methods.

2.1 Protein classification
There are various similarity measures that can be applied to
proteins. Databases like COG are based on functional sim-
ilarities, while other databases (like SCOP40) are based on
structural similarity. More precisely the similarity is based
on the three dimensional structure and amino acid sequences
of the proteins [10]. Two protein sequences are similar if they
contain subsequences that share more similar amino acids
than would be expected to occur by chance. Sequence com-
parison algorithms can be based on exhaustive search, like
the Smith-Waterman algorithm, but heuristic algorithms,
like BLAST, are also used frequently. Other forms of simi-
larity measurements include structural comparison methods
(like PRIDE or DALI). For details about the above meth-
ods see [3]. The measurement counted by these methods is a
true similarity measurement, meaning that for very similar
proteins, they produce a high score, and for very different
proteins they produce a value close to zero. It might be
worth mentioning, that some algorithms produce a distance
measurement, which means, that similar elements have a
score close to zero, and different elements have a greater
score.

Protein classification is traditionally considered to be a bi-
nary classification problem [2], although the one-class clas-
sification approach is also very popular [1]. In this paper,
we stick to the traditional approach, meaning we consider
the training dataset as a set of both positive and negative
examples, and we expect the algorithm to produce the same
classification.

9

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

The SCOP40mini database consist of 1357 protein domain
sequences, which belong to 55 superfamilies [3]. The se-
quences were divided into training and test datasets. Mem-
bers of the test datasets were chosen so that they were not
represented in the training set, meaning there was a low
degree of sequence similarity and no guaranteed evolution-
ary relationship between the two sets. The SCOP40 mini
database contains nine different similarity measurements,
based on sequence and structural comparison methods [3].

2.2 ROC Analysis
Measuring the goodness of the results of an algorithm is
also an important issue. One of the most widely accepted
measurement methods in bioinformatics is receiver operat-
ing characteristics (ROC) analysis. ROC analysis provides
both visual and numerical summary of the classifiers results
[9]. Originally developed for radar applications in World
War II, it became widely used first in medical applications,
later in machine learning and data mining.

Receiver operating analysis is generally used for evaluating
the results of a binary classifier. A binary classifier assigns
an element to one of two classes, usually noted positive or
negative (+ or -). The classification process uses two dis-
tinct datasets, the train and the test dataset. In machine
learning, the training dataset is used to train the algorithm,
in other methods it is used as the basis of calculating the
results. Classification methods can be divided further into
two distinct categories. Discrete classifiers only predict the
classes where the test elements belong. This means, that
the classifier can produce 4 different results: true positive,
true negative, false positive and false negative. From these,
a contingency table can be constructed, and various mea-
surements can be counted. Of these, two important ones
should be mentioned:

• TPR (true positive rate) =
TP

TP + FN

• FPR (false positive rate) =
FP

FP + TN

Where TP, TN, FP, FN denote the four cases mentioned
above. The other type of classifiers is the probabilistic clas-
sifier. This assigns a value between 0 and 1 to each member
of the test set, which can be viewed as a degree of similarity
to the distinct classes. This score is then used to create a
ranking of elements, and the classifier is good, if the pos-
itive elements are at the top of the list. More precisely if
we apply a threshold value to this ranking we can create a
discrete classifier. By applying multiple threshold values, we
can create an infinite number of classifiers.

Using these threshold values we can create a ROC curve by
counting the true and false positive rates for each thresh-
old value. An example can be seen on Figure 1. Each
point of the curve corresponds to a threshold value, which in
turn corresponds to a discrete classifier. A ROC curve can
be evaluated both numerically and graphically. The ideal
classifier creates a ROC curve that is identical to the unit
step function. A classifier which assigns test elements to the
classes at random generates a ROC curve that is identical

Figure 1: ROC curve

to the unit ramp function. In general, the higher the curve,
the better the classification. It must be mentioned, that the
curve is only defined between 0 and 1 on each axis. This is
of course derived from the fact that both TPR and FPR are
values between 0 and 1.

By counting the integral value of the curve we get the “area
under curve value”, or AUC. The AUC value of an ideal clas-
sifier is 1, the random classifier has a value of 0.5. The AUC
value can be interpreted as the probability that a randomly
chosen positive element is ranked higher than a randomly
chosen negative element. In this paper the AUC value in it-
self is used to measure the goodness of the results, although
it is worth mentioning that a high AUC value does not guar-
antee that the positive elements are ranked at the top of the
list. This topic is discussed further in [8, 9].

2.3 Propagation algorithms
Originating from graph theory, propagation algorithms re-
quire a network containing vertices and edges as the basis of
the method. Perhaps the most known propagation method
is the PageRank algorithm [6], first used by Google for infor-
mation retrieval tasks. Note, that Kleinberg had proposed a
very similar algorithm for finding hubs and authorities ear-
lier [4].

There are various ranking algorithms specifically for protein
classification, namely [1, 2, 5, 10] . In general, these meth-
ods use a query mechanism to generate results. With the
given similarity network, we add a new element as query,
and the classification algorithm calculates the class (or the
probability) this element belongs to.

In comparison, most algorithms from graph theory [7] use
the entire network for propagation. In label propagation,
some nodes of the network have initial labels, some not, and
the purpose of the algorithms is to assign labels to nodes,

10

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

that did not have labels previously. The method described in
this paper uses the latter approach, and volunteers to solve
the classification task without the need to cut the edges of
the similarity network.

3. A SIMPLE PROPAGATION ALGORITHM
The method we propose in this paper is a simple general
propagation algorithm for function approximation closely
based on the works of [7]. The method is general in a sense,
that it was not created solely for the purpose of protein
classification, although in this paper we will stick to this
example of its application.

3.1 The label propagation algorithm by Ragha-
van et al.[7]

Originally a community detection algorithm, the label prop-
agation method of Raghavan et al. is based on a simple, but
effective idea. In a graph (directed or not) we assign labels
to each node. In one iteration step, each node x adopts the
label that a maximum number of its neighbors x1, x2, ..., xk

share. When a tie happens, a random selection is used. At
the beginning, each node is initialized with a different label,
and as labels propagate through the network, sooner or later
a consensus emerges among the densely connected subgraph
of the original graph. Communities are formed this way. It
is also easy to generalize this method to weighted graphs.
An example of this process can be seen on Zachary’s karate
club network [11] on Figure 2. The three different shades of
grey represent the different labels.

Figure 2: Propagation example

The labels can be updated synchronously or asynchronously.
In the first case the labels assigned at iteration number
t depend only on the labels of iteration t − 1 : Lx(t) =
f(Lx1(t− 1), Lx2(t− 1), ..., Lxk (t− 1)), where L(x) denotes
the label of node x at iteration t, and f is the update func-
tion.

If there are subgraphs in the network, that are bipartite
or nearly bipartite in structure this method might oscil-
late. The asynchronous update method solves this problem:
we consider a node in iteration t. There are some neigh-
bors that have already updated their labels in iteration t :
x1, x2, ..., xm, and some have not, these have the labels from
iteration t − 1: xm+1, xm+2, ..., xk. We update the label of

the node based on the labels of the current iteration in the
case of neighbors, that have already updated their labels.
For neighbors not yet updated, we use the labels of itera-
tion t − 1. Lx(t) = f(Lx1(t), Lx2(t), ..., Lxm(t), Lxm+1(t −
1), Lxm+2(t − 1), Lxk (t − 1)). In the synchronous case the
order in which we choose the nodes for updating is irrele-
vant. In the asynchronous case the order can be important.
In the original method a random approach is used.

This algorithm can also be called the coloring algorithm,
because the labels can be viewed as colors, and in the end,
each community has a different color. The colors or labels
can also be viewed as categories, thus if we have only two la-
bels, we have two categories, and this correspons to a binary
classification problem.

3.2 Application for binary classification
As we have mentioned before, in binary classification the two
classes are usually called positive and negative, and there
are two distinct datasets used by the algorithm, the train
dataset, and the test dataset.

A similarity matrix is constructed (according to some com-
parison method) between the elements of both datasets.
The similarity values are available for the whole dataset,
even between the test and train datasets s(x, y) : x, y ∈
(Train∪Test). If we consider the dataset elements as nodes
of a graph, this similarity value defines an edge weight, cre-
ating a weighted graph containing both the elements of the
train and test datasets.

With a small modification, the algorithm described above
can be applied to the protein classification problem. In the
original algorithm each node receives an initial label different
from all other labels. This is of course not correct for the
purpose of binary classification. The labels are only known
a priori for the train dataset, so only these nodes get an
initial label, and as the algorithm terminates, the unlabeled
nodes will get labels as well.

If we apply this algorithm directly to the problem described
above, we get very poor results. This is not surprising, since
this method (and most community detection methods) are
not designed for complete graphs like the similarity networks
of this problem.

One obvious way to solve this problem is to convert the
graph into an unweighted form by cutting the edges accord-
ing to some weight limit, but this results to the also obvious
problem of choosing the appropriate value. With luck or af-
ter a significant number of trial and error steps, it is possible
to get good results. Still, this is not a feasible solution to
the problem.

3.3 The AProp method
The method proposed in this paper uses a different ap-
proach. Rather than using discrete labels for the algorithm,
we work with continuous ones. Theoretically there are no
restrictions on the labels we can use, although in our ap-
proach, we have used real numbers to represent the labels.
If we choose two distinct labels for the original classes (like

11

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

0 and 1), the algorithm will assign values to the uninitial-
ized nodes between these. It is important to point out, that
these values should not be thought of as probabilities. They
represent some “closeness” to one class or the other. These
values can then be evaluated with ROC Analysis to produce
a goodness measurement.

The update rules are only shown for the synchronous method.
There are two reasons for this. In the original algorithm, the
asynchronous update rule was introduced to solve conver-
gence issues. These issues occurred because nearly bipartite
subgraphs caused fluctuations of the discrete labels. Using
continuous labels solves this problem, thus the asynchronous
rules are not needed. In contrast to this, just for the sake of
curiosity we have implemented the asynchronous version as
well, but testing showed that they do not perform as good
as the synchronous method.

The labels are updated according to the formula described
in the previous section, the only difference being the update
function f changing to a simple summation. The label of
node x changes based on the labels of its neighbors N(x):

Lx(t) =
1

d

∑

y∈N(x)

Ly(t− 1),

where d denotes the degree of x. It is easy to extend this
rule for weighted graphs. Let dw denote the weighted degree
of x.

Lx(t) =
1

dw

∑

y∈N(x)

s(x, y)Ly(t− 1),

where s(x, y) is the similarity value between nodes x and
y mentioned above. It is worth noting, that the similarity
value is symmetric s(x, y) = s(y, x), so we have designed the
algorithm to work with undirected graphs. The initialized
labels never change, so they should be left out of the update
process. This also reduces time complexity significantly.

The algorithm consists of iteration steps, the number of it-
erations being a possible parameter. Another way to stop
the algorithm would be to count the changes that happen
in an iteration, and when this change is below a given min-
imum, the algorithm halts. Our experience shows us, that
no significant change occurs after 6 to 8 iterations.

The label propagation algorithm of Raghavan et al. begins
with initializing each node with a different label. We have
dropped this approach because we wanted to use the algo-
rithm for binary classification, but since we do not know the
labels of the members of the test database a priori, some
nodes will be left uninitialized. This leads us to the problem
of representing the uninitialized status of nodes.

There are two ways of solving the problem. The first way
is the “blind” approach. In this case, we do not represent
the uninitialized status at all. These nodes can be selected
for updating labels, but otherwise they are simply left out

of the summation. To do this, first we have to sort out the
unlabeled nodes from the neighborhood sets. Also, when we
count the weighted degree, we should only consider edges
that are incident to labeled nodes. This somewhat changes
the update rule.

Lx(t) =
1

ds

∑

y∈Ns(x)

s(x, y)Ly(t− 1),

where Ns(x) denotes the sorted neighborhood, and ds de-
notes the sorted degree.

The second method is to assign a value to the uninitialized
status. This way, we do not have to change the algorithm at
all. But this also leaves us with the question: What value
should be used for the uninitialized nodes? This solution is
called the “biased” approach. The value of the uninitialized
nodes should be chosen accordingly to the two class labels.
Depending on these considerations, the algorithm can be
further divided into three categories:

• Neutral biased. The value is neutral towards the class
labels. For example, the class labels are 0 and 1, the
value is 0.5.

• Directly biased. The value is one of the class labels.
For example, the class labels are 0 and 1, the value is
0 or 1.

• Indirectly biased. Any value, that is not one of the
class labels or the neutral value. In the case of 0 and
1, any value other than 0, 1 and 0.5.

In the last two cases, further distinction can be made de-
pending on what class label do we choose, or in the third
case what class label is closer to the uninitialized value.

In the end, there are four (or six) variations of the algorithm.
Perhaps it is not a big surprise that these variations perform
slightly differently when applied to the protein classification
problem.

4. RESULTS
Our method was tested on the SCOP40mini and 3PGK
databases [3]. The SCOP40mini database consists of 55 clas-
sification tasks, and there are seven similarity (or distance)
networks available for it. The 3PGK database consists of
ten experiments and four similarity (or distance) networks.
Further details of the networks can be seen on [3]. In Tables
2 to 5,

• BLAST stands for the basic local alignment search
tool.

• SW stands for the Smith-Waterman algorithm.

• NW stands for the Needleman-Wunsch method.

• LA stands for the local alignment kernel method.

12

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Table 1: The convergence of the algorithm
Iterations 1 2 3 4 5 6 7 8 10 16
Ex1 1 1 1 1 1 1 1 1 1 1
Ex2 1 1 1 1 1 1 1 1 1 1
Ex3 0.9548 1 1 1 1 1 1 1 1 1
Ex4 0.7391 0.8009 0.8571 0.893 0.9207 0.9253 0.9317 0.9336 0.9345 0.9354
Ex5 0.8827 0.9215 0.9279 0.9236 0.9204 0.9118 0.9107 0.9107 0.9096 0.9096
Ex6 1 1 1 1 1 1 1 1 1 1
Ex7 0.709 0.7909 0.8227 0.8363 0.85 0.85 0.85 0.85 0.85 0.85
Ex8 0.9727 0.9886 0.9931 0.9931 0.9931 0.9931 0.9931 0.9931 0.9931 0.9931
Ex9 1 1 1 1 1 1 1 1 1 1
Ex10 0.7613 0.7982 0.8153 0.8295 0.8352 0.838 0.838 0.838 0.838 0.838
Avg 0.9019 0.93 0.9416 0.9475 0.9519 0.9518 0.9523 0.9525 0.9525 0.9526

• PRIDE stands for Pride structural similarity.

• LZW stands for the Lempel-Ziv-Welch method.

• DALI stands for DaliLite structural alignment.

• PsiBLAST stands for Position-Specific Iterated BLAST.

We have also compared our results with other algorithms
provided as a benchmark. Further details of these can be
seen on [3]. In Tables 2 to 5,

• 1nn stands for the one nearest neighborhood method.

• RF stands for random forest classification.

• SVM stands for a support vector machine.

• ANN stands for an adaptive neural network.

• LogReg stands for logistic regression.

• AProp stands for approximate propagation.

4.1 Iteration number
For determining the optimal iteration number, we have tested
the algorithm on the Smith-Waterman similarity matrix of
the 3PGK database. In Table 1, the AUC values are dis-
played for the individual experiments and the average value
as well.

It can be seen that the values do not change much after it-
eration 7, so this was the value we have used for the rest
of the evaluation. It is also worth noting that the perfor-
mance does not increase monotonously before iteration 7,
but fluctuate somewhat.

4.2 3PGK
The results for all variations of the algorithm can be seen
in Tables 2 and 3, as well as a comparison against other
algorithms. In the first column, the algorithm variations
can be seen.

• nb denotes neutral biased.

• dbn denotes directly biased towards negative.

Table 2: Results for 3PGK
Method BLAST SW LA
blind 0.9241 0.9470 0.9484
nb 0.9234 0.9412 0.9481
dbn 0.9336 0.9518 0.9473
dbp 0.8973 0.9029 0.9483
idbn 0.9267 0.9317 0.9444
idbp 0.8898 0.9048 0.9485

Table 3: Results for 3PGK
Method BLAST SW LA
1nn 0.8633 0.8605 0.8596
RF 0.8517 0.8659 0.8755
SVM 0.9533 0.9527 0.9549
ANN 0.9584 0.9548 0.9564
LogReg 0.9537 0.9476 0.9593
AProp 0.9336 0.9518 0.9485

• dbp stands for directly biased towards positive.

• idbn stands for indirectly biased towards negative.

• idbp denotes indirectly biased towards positive.

If we consider only the variations of the approximation al-
gorithm, we can see that none of the approaches appear to
be dominant. It can also be seen, that our method performs
almost as good as the best approaches.

4.3 SCOP40mini
The results for all variations of the algorithm can be seen
in the Tables 4 and 5, as well as a comparison against other
algorithms. Unlike in the previous case, the idbp approach
outperforms all other variations. We can only guess the rea-
son for this behaviour. It is possible, that the experiments
in this dataset are structured in a way, that initializing the
test dataset towards the positive class label greatly enhances
performance. In the implementation, the positve class was
labeled 1 and the test dataset was intialized with the value
of 2.

13

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Table 4: Results for SCOP40mini
Method BLAST SW NW LA PRIDE LZW PsiBLAST DALI
blind 0.899 0.9476 0.9337 0.9442 0.8891 0.8261 0.9083 0.9974
nb 0.9245 0.9492 0.9353 0.9455 0.8897 0.8267 0.9239 0.995
dbn 0.8909 0.9475 0.9335 0.944 0.889 0.826 0.9065 0.9974
dbp 0.932 0.9509 0.9372 0.9466 0.8903 0.8273 0.9304 9977
idbn 0.66 0.9434 0.929 0.9412 0.8876 0.8247 0.7792 0.994
idbp 0.9382 0.9536 0.9405 0.9491 0.8914 0.8283 0.9363 0.998

Table 5: Results for SCOP40mini
Method BLAST SW NW LA PRIDE LZW DALI
1nn 0.7577 0.8154 0.8252 0.7343 0.8644 0.7174 0.9892
RF 0.6965 0.8230 0.8030 0.8344 0.9105 0.7396 0.9941
SVM 0.904 0.9419 0.9376 0.9396 0.9361 0.8288 0.9946
ANN 0.7988 0.8875 0.8834 0.9022 - 0.8346 -
LogReg 0.8715 0.9063 0.9175 0.8766 0.9029 0.7487 0.9636
AProp 0.9382 0.9536 0.9405 0.9491 0.8914 0.8283 0.998

It can be seen that our method performs better than the
other algorithms in most cases. The running time of the
algorithm is very low. The database consists of 55 classi-
fication tasks. Solving all of these tasks took 15 minutes
on an average notebook computer. This means that for the
evaluation of one task, around 16 seconds is needed.

5. CONCLUSION AND FUTURE WORKS
It can be seen from the results, that our algorithm generally
performs better on larger databases, with the running time
being sufficiently low. The method is relatively general in a
way, that it can be used as an approximation algorithm, but
it can be extended in several ways described below.

This method is very sensitive to the starting labels of the
nodes. This can be a weakness, but a proper learning al-
gorithm can exploit this property and improve the overall
performance of the algorithm.

Making the method more general can be difficult. The
labeling approach is designed to handle binary classifica-
tion tasks. One way to extend this would be to use multi-
dimensional labels. Using one number to describe a label
corresponds to a one dimensional coordinate. Extending the
number of dimensions for the labels would result in multiple
classes, while one coordinates would indicate some sort of a
membership function towards one class or the other.

Acknowledgment
The author was supported by the Project named “TÁMOP-
4.2.1/B-09/1/KONV-2010-0005 - Creating the Center of Ex-
cellence at the University of Szeged” also supported by the
European Union and co-financed by the European Regional
Fund.

6. REFERENCES
[1] A. Bánhalmi, R. Busa-Fekete, and B. Kégl. A

one-class classification approach for protein sequences
and structures. In Proceedings of the 5th International
Symposium on Bioinformatics Research and
Applications, ISBRA ’09, pages 310–322, Berlin,
Heidelberg, 2009. Springer-Verlag.

[2] R. Busa-Fekete, A. Kocsor, and S. Pongor. Tree-based
algorithms for protein classification. In Computational
Intelligence in Bioinformatics, pages 165–182. 2008.

[3] http://net.icgeb.org/benchmark/. Protein benchmark
database.

[4] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. J. ACM, 46:604–632,
September 1999.

[5] A. Kocsor, R. Busa-Fekete, and S. Pongor. Protein
classification based on propagation of unrooted binary
trees. Protein and Peptide Letters, 15(5):428–437,
June 2008.

[6] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical Report 1999-66, Stanford InfoLab,
November 1999. Previous number =
SIDL-WP-1999-0120.

[7] U. N. Raghavan, R. Albert, and S. Kumara. Near
linear time algorithm to detect community structures
in large-scale networks. Phys. Rev. E, 76(3):036106,
Sep 2007.

[8] A. K. Róbert Busa-Feketea, Attila Kertész-Farkasa
and S. Pongor. Balanced roc analysis (baroc) protocol
for the evaluation of protein similarities. Journal of
Biochemical and Biophysical Methods, 70(6):1210 –
1214, 2008.

[9] P. Sonego, A. Kocsor, and S. Pongor. Roc analysis:
applications to the classification of biological
sequences and 3d structures. Briefings in
Bioinformatics, 9(3):198–209, January 2008.

[10] J. Weston, A. Elisseeff, D. Zhou, C. Leslie, and
W. Noble. Protein ranking: from local to global
structure in the protein similarity network. PNAS
USA, 101:6559–6563, 2004.

[11] W. W. Zachary. An information flow model for
conflict and fission in small groups. Journal of
Anthropological Research, 33:452–473, 1977.

14

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Optimal and Reliable Covering of
Planar Objects with Circles

Endre Palatinus
Institute of Informatics
University of Szeged

2 Árpád tér
Szeged, Hungary H-6720

palatinuse@gmail.com

ABSTRACT
We developed an algorithm for finding the sparsest cover-
ing of planar objects with a given number of circles with
fixed centers. The covering is tested reliably using interval
arithmetic. We applied our solution to a telecommunication
related problem.

Supervisor: Dr. Balázs Bánhelyi assistant professor, In-
stitute of Informatics, University of Szeged

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global opti-
mization

1. INTRODUCTION
The circle packing problem has attracted much attention in
the last century, and a variant called packings of equal circles
in a square receives attention even nowadays [1]. The objec-
tive of it is to give the densest packing of a given number of
congruent circles with disjoint interiors in a unit square.

However, its dual problem, the circle covering has not been
exhaustively studied so far. Optimal coverings of the unit
square with congruent circles of minimal radii have been
found[2] only for small numbers and their optimality have
been proved mathematically. Computational methods have
been developed[3] to find solutions for higher circle counts,
but the produced results were neither computationally reli-
able, nor provable approximations of the global optimum.

Our aim is to develop a global optimization method for find-
ing the sparsest reliable covering of a convex or concave pla-
nar object with a given number of circles with fixed centers
where the sizes of the circles’ radii may be different. By
sparsest we mean minimizing the sum of the circles’ area.
We have chosen this fitness function, because it can prove
useful in many applications, such as covering a region with
terrestrial radio signals and determining the optimal energy
consumption of wireless sensor networks.

2. RELIABLE COMPUTING
The CPUs of todays personal computers have an arithmetic
optimized for computer games. This means that the speed
of the computations is more important than the accuracy of
them. The floating point computations performed by these
CPUs yield results in the domain of the numbers which can
be represented in their arithmetic. Since every result is only
an approximation of the true results, the error of a complex
computation can be arbitrarily large. Consider for example
the following expression:

2100 + 2010 − 2100 =?

When calculating the result of this expression using double-
precision floating point arithmetic the result will be 0 in-
stead of 2010. This is due to the limited precision of the
arithmetic.

Mathematicians don’t accept computer assisted proofs if
they contain computations performed with unreliable arith-
metic. Even the solution of global optimizers can be doubted
to be globally optimal ones if we consider that their compu-
tations contain accumulated rounding errors. Interval arith-
metic is one solution for handling the uncertainty of com-
putations. It represents the results of computations as in-
tervals, which are guaranteed to contain the precise result.
This way it incorporates the rounding errors, too, but does
not hide it as the floating point arithmetic does.

3. THE CIRCLE COVERING PROBLEM
Let (r1, r2, . . . , rn) denote the radii of the circles in our con-
strained optimization problem. Therefore the fitness func-
tion is:

f ((r1, r2, . . . , rn)) =
n∑

i=1

r
2
i → min

To solve the previous problem we need:

• a reliable method for testing if a given arrangement is
covering or not

• and an optimizer for finding the optimal one.

Checking if a given arrangement is covering or not can be
done by checking whether every point of the planar object

15

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

is covered by any of the circles. This is where interval arith-
metic proves to be quite useful, because applying it we can
check whether a rectangle is covered by any of the circles
simply by replacing points with intervals. An additional
benefit of using it is that our algorithms become reliable by
avoiding uncertain computations. In our implementation we
used C-XSC[4], a widely recognized C++ class library for
extended scientific computing, which provided the interval
arithmetic extension of all the mathematical operations.

We can define the covering property as follows: Every circle
is an open set on a plane. The desired property for every p

point of the planar object and some (center, r) circle:

sup((p− center)2) < inf(r2)

It is straightforward to use a Branch-and-bound–basedmethod
for checking the covering. We have chosen a parallelized
B&B method introduced in [5], since there is a great poten-
tial in traversing the different branches of the B&B search
tree concurrently on different CPU cores.

We can even check general properties of multidimensional in-
tervals, as the following statements say: If we have a method
capable of proving a P property of a point and its neighbor-
hood, then the B&B–based testing method is able to prove
this P property for a multidimensional interval. In case the
interval has the given property we have to traverse the whole
B&B search tree, and the subtrees can be traversed concur-
rently by different CPU cores. If there is no lower bound on
the width of the subintervals created, then in the positive
case the algorithm terminates in finite steps with positive
answer[6]. In practice there’s always a lower bound (ε), and
if the width of a subinterval reaches this bound and it does
not have the property, then we cannot decide the problem
and return a negative answer.

To demonstrate the running of the testing method, we will
use some simple testcases: n2 circles on a regular n ∗n grid.
The results can be seen on figure 1. As our experiments have
shown, we have gained an increase in performance compa-
rable to the number of CPU-cores[7] on these simple test
cases, as shown on figure 2. We can also state according
to figure 3 - which is the plot of the runtime divided by n4

versus n - that the runtime of the algorithm is O(n4), that
is O(m2) if m denotes the total number of circles, which is
equal to n2.

4. THE MATHEMATICAL MODEL OF THE
PROBLEM

Now that we have introduced a reliable method for testing if
a given arrangement is covering or not, we can concentrate
on our second problem: finding the optimal one. First we
have to examine the mathematical model of the problem.

We start with some simple definitions: We call r = (r1, r2, . . . , rn)
a configuration, which is a vector holding the radii of the
circles. A configuration is bad if the corresponding cir-
cles do not cover the planar object, and good, otherwise.
Let C = ([c1, c1], . . . , [cn, cn]) denote a set of configurations,
where the i-th component of every configuration in the set
falls into the [ci, ci] interval. The two distinguished configu-

(a) n = 3

(b) n = 4

Figure 1: The running of the testing method.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30

In
cr

ea
se

 in
 E

xe
cu

tio
n

S
pe

ed

Number of Circles

2 threads
3 threads
4 threads

Figure 2: The efficiency of the testing method.

Figure 3: The runtimes of the testing method.

16

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

(a) Both bad

(b) Both good

(c) C bad and C good

Figure 4: Properties of the configuration sets.

rations of C are: C = (c1, . . . , cn) and C = (c1, . . . , cn).

Now we will show some simple properties of these configu-
ration sets, which will prove useful in constructing an opti-
mizer for the radii sizes. If the distinguished configurations,
C and C of C are bad, then the C′ = ([0, c1], . . . , [0, cn])
set cannot contain the optimal solution. If the distinguished
configurations, C and C of C are good, then the C \ C set
cannot contain the optimal solution. It follows that only
such a C set may contain the optimal solution, whose C

configuration is bad, and C configuration is good. On figure
4 we have depicted these statements in two dimensions.

5. DETERMINING THE OPTIMAL RADII
SIZES

Finally, we can introduce our B&B–based global optimizer
for the radii sizes.

Optimizer algorithm:

• Let Q be an empty minimum priority queue, whose
Ci elements’ priority is determined by the value of the
fitness function for the Ci configuration.

• Push the C0 = ([0, c1], . . . , [0, cn]) initial set of con-
figurations into Q, where C0 is a configuration with a
suitably high fitness value.

• Loop:

– Pop a C set of configurations from Q.

– Subdivide C along its widest side into two equal
parts, C1 and C2, in such a way that C = C1 and

C = C2.

– If C1 is a good configuration, than push C1 into
Q.

– If C2 is a bad configuration, than push C2 into Q.

• Until the width of C is less than ε.

• Return C as the solution.

Using the properties of the configuration sets it can be proved
that the above algorithm finds an approximation of the global
optimum with arbitrary precision.

6. APPLICATIONS
We can apply our results for the problems mentioned in the
introduction. Covering Hungary with terrestrial radio sig-
nals is a problem where we have to cover a concave planar
object with circles, since the signals cover a circular area
around the broadcasting stations. The area covered by a
station is linearly dependent on the power fed into it, there-
fore minimizing the power consumption of the hole network
is equivalent to minimizing the sum of the area of each cir-
cular region covered by the stations, which happens to be
the value of our fitness function. Some optimal solutions can
be seen on figure 5. Similar problems have been solved in
[8] but with unreliable computations.

Some optimal coverings of the unit square are also shown on
figure 6.

7. REFERENCES
[1] Szabó, P.G., M.Cs. Markót, T. Csendes, E.

Specht, L.G. Casado, and I. Garćıa: New
Approaches to Circle Packing in a Square – With
Program Codes. Springer, Berlin, 2007.

[2] Erich Friedman: Circles Covering Squares.
http://www2.stetson.edu/ efriedma/circovsqu/, (2005)

[3] Nurmela, K.J. and P.R.J. Östergard: Covering a
square with up to 30 equal circles, Helsinki University
of Technology, Laboratory for Theoretical Computer
Science Research Reports, 62(2000)

[4] Hofschuster, Krämer, Wedner, Wiethoff, C-XSC 2.0 -
A C++ Class Library for Extended Scientific
Computing, Preprint BUGHW-WRSWT 2001/1,
Universität Wuppertal, 2001.

[5] Casado, L.G., J. A. Martinez, I. Garcia, and
E.M.T. Hendrix :, Branch-and-Bound interval global
optimization on shared memory multiprocessors,
Optimization Methods Software, 23(2008), 689–701.

[6] Bánhelyi, B., Csendes, T. and Garay B. M.: A Verified
Optimization Technique to Locate Chaotic Regions of
Hénon Systems. Journal of Global Optimization,
35(2006), 145–160.

17

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Figure 5: Optimal coverings of Hungary

Figure 6: Optimal coverings of the unit square

[7] Palatinus, E., Bánhelyi, B.: Circle Covering and its
Applications for Telecommunication Networks
Proceedings of the 8th International Conference on
Applied Informatics, Eger, Hungary, (2010), Submitted

[8] Das, G.K., S. Das, S.C. Nandy, and B.S. Shina:
Efficient algorithm for placing a given number of base
station to cover a convex region, J. Parallel Distrib.
Comput. 66(2006), 1353–1358.

18

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

TRUTH-TELLER LIAR PUZZLES
A GENETIC ALGORITHM APPROACH

(WITH TUNING AND STATISTICS)
 Attila Tanyi

Debreceni Egyetem

Debrecen, Hungary
+36 52 512900/22792

tatil@bom.hu

ABSTRACT
In this paper, satisfiability-like problems, namely a family of
truth-teller liar puzzles are considered. In our puzzles, every
participant may say only one complex statement (a conjunction of
atomic statements) about the type of the other participants. Truth-
tellers can say only true atomic statements, while a liar must say
at least one false atomic statement if he/she says anything. The
problem is to find the solution, i.e., which participants are liars
and which of them are truth-tellers. We present a solution
algorithm based on a genetic algorithm approach, where several
types of tuning can be implemented.

Categories and Subject Descriptors
I.2.m [Artificial Intelligence]: Miscellaneous genetic
algorithms.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Genetic Algorithm, Truth-Teller Liar Puzzle, Tuning.

Supervisor
dr. Benedek Nagy.

1. INTRODUCTION
The truth-teller liar puzzles are well-known. Scientists also like
puzzles, since they can effectively be used in teaching, in
argumentation etc. Puzzles are the topics of several books, they
were analysed by, e.g., R. Smullyan [11,12,13]. Several variations
of truth-teller-liar puzzles are characterized in [9]. There are
Strong truth-tellers, whose all (atomic) statements are true, while
a person is a Weak truth-teller if there is a true atomic statement
among his statements. Similarly, a Strong liar can only say false
(atomic) statements, while a Weak liar has at least one false

atomic statement among the statements he is uttered. A puzzle has
a category by the types of its truth-tellers and liars. In detail, SS-
type puzzles are shown in [10]. We deal with special types of
puzzles, called SW-type puzzles having Strong truth-tellers and
Weak liars. They are solved by a graph modification method in
[4,5]. They are also related to Boolean programming [5,7]. The
duality of SW and WS puzzles is presented in [6]. Non-monotonic
reasoning related to WW-puzzles is presented in [8]. In this paper,
we consider only SW puzzles. The hardness of satisfiability-like
problems suggest new approaches to try. Here, a genetic
algorithm is used to solve these problems. Fine-tuning of its
various parameters and functions are also shown to increase
performance. The implementation is written in Java.

2. THE TRUTH-TELLER LIAR PUZZLES
In this paper we use only special truth-teller puzzles, where the
participants have full knowledge on their type and they can say
only sentences about these facts.
There are N participants in the riddle, each of who is either a liar
or a truth-teller. Statements are given in the form of

 and and ... and

where , , ... are sub-statements (or atomic statements)
either in the form of

 or -
Where X and Y are names of arbitrary participants. Each of the
participants can only tell at most one statement about the other
ones. The total number of atomic statements is M.
Example: The participants are Alice, Bob and Charlie. (N=3)
There are 2 statements given, which consist of 3 atomic
statements. (M=3)
Alice says: Bob is a liar and Charlie is a truth-teller.
Charlie says: Alice is a liar.

The task is to find out which participants are liars, and which of
them are truth-tellers by the given statements.

3. THE GENETIC APPROACH
In this section we give some details of our genetic algorithm. We
do not recall all the details how a genetic algorithm works, they
can be found in several text books in the topic, like [1,2,3]. For
various terms used here we also refer to [1,2,3].
The chromosomes of the individuals are arrays of bits
representing the statuses of the participants.

19

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

For example ():

L L T L T T T

The fitness function comes from biological motivation. It rates
the solution candidates by assigning fitness values to them. The
better a solution candidate is, the greater value it should have.
Here, the fitness function shows how many statements are
fulfilled by a permutation of statuses, .
A solution is optimal, if the fitness function is equal to M,

. (i.e. all the statements are fulfilled)
The genetic algorithm works with PS individuals at the same
time, basically performing a parallel search. In each step, it
creates a new generation of individuals, keeping the best
individual for the next generation, and creating the rest by
roulette wheel selection, which is selecting parents randomly
(the greater fitness value the individuals have, the bigger
probability they become selected), and creating offsprings by
using uniform crossover and mutation.
Mutation operator is .
The mutation operator negates the bits of chromosomes with a
small probability .

Uniform crossover operator is .
The uniform crossover operator assigns a new chromosome to two
chromosomes where the bits at each position gets either of the
values of the bits at the corresponding positions of the two
chromosomes with a probability of 50%.

.

4. FINE-TUNING
The data were gathered by running the algorithm 10, 50, or 100
times, and taking average. A run is measured by the number of
individuals it creates, to which we will refer to as running time.
The following parameters are tuned:

N number of participants
PM probability of mutation
PS population size

First we generate the puzzle by the only parameter N, the number
of participants. The program generates 5% of all possible atomic
statements (for example, for 20 participants - about 19 statements)
and make the complex statement from them according to the
definition.

4.1 Test 1: How does running time change
when decreasing PM?

Figure 1. Running time as a function of probability of

mutation.

To set the value of PM to be 0,05 might seem reasonable, as
0,05=1/N, therefore the algorithm would make one mutation in
each individual. However, the graph shows the tendency: the
smaller the probability of the mutation, the sooner we are
getting the optimal result. This is because even just one mutation
(changing the status of a participant) has dramatic effects on the
fitness of the individuals. We should not go all the way to zero
though: at zero, the probability of coming to a dead end increases,
as usual in genetic algorithms.

4.2 Test 2: How does running time change
when decreasing PS?

Figure 2. Running time as a function of population size.

Test 2 has another surprise, the population size of the fastest
algorithms fall between 50 and 80. The minimal value is at 60
for N=25 (while it was at 50 for N=20), which is quite far away
from the initially used 2000. Even if the number of possible
solution-vectors are very large, i.e., 2N, it seems that relatively
small population size suffices.

0 0,0125 0,025 0,0375 0,05 0,0625 0,075 0,0875 0,1

PS = 2000, N = 20

Note: At zero probability there is a bigger chance of coming to a dead end

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

12
5

25
0

50
0

10
00

20
00

40
00

80
00

PM = 0.01, N = 25

20

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

4.3 Test 3: How does running time change
when increasing N?

Figure 3. Running time as a function of N.

The number of individuals needed to find an optimal solution is
growing fast before N=35. Above 35 it does not increase so fast
by the graph, it is probably because our measure. Not to wait too
much time a limit was given, i.e., if 150 generations does not
provide the result, then this (dead-end) run is excluded from the
experiment (and so, from the measure). At N=40 and above the
running time increases to a value, that several runs were above the
limit. At N=50, not even 300000 individuals (150 generations
times the population size) are enough to find the optimal solution.
For this reason the algorithm is developed to use a convergence
checker.

4.4 Test 4: Convergence checker setting the
convergence limit
A convergence checker is added to the algorithm, which restarts
the search, if the fitness value of the best individual of the given
population does not converge. In a given number of populations it

If it does not change in CL (convergence limit) populations, the
search restarts, hoping for a better initial population (which is
likely, because of the high number of possible optimal solutions).
Now we show results about tuning the value of the convergence
checker.

Figure 4. Running time as a function of convergence limit.

From this point, the search goes on until an optimal solution is
found. In order to reach this, the program may restart the search as
many times as needed. The value of CL = 40 is chosen, where all
the four tests gave promising results.

5. THE RESULTS OF FINE-TUNING
Based on the previous experiences and test results, considering
space complexity, the parameters of the speed-optimized search:

 Probability of mutation: PM =
 Population size: PS = 55
 Convergence limit: CL = 40

A run of the Java program on an average notebook computer takes

for N=30 0,747 sec,
for N=35 2,446 sec,
for N=40 3,7 sec,
for N=45 6,541 sec,
for N=50 22,587 sec

to find an optimal solution of a generated puzzle.

0
10000
20000
30000
40000
50000
60000
70000
80000

5 10 15 20 25 30 35 40 45

PS = 2000, PM = 1/(4N)

0

2000

4000

6000

8000

10 30 50 70 90 110 130 150 170 190

MP = 1/(4N), PS = 55, N=20

0

5000

10000

15000

10 30 50 70 90 110 130 150 170 190

MP = 1/(4N), PS = 55, N=25

0

5000

10000

15000

10 30 50 70 90 110 130 150 170 190

MP = 1/(4N), PS = 55, N=30

0

20000

40000

60000

80000

10 30 50 70 90 110 130 150 170 190

MP = 1/(4N), PS = 55, N=35

21

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

5.1 Test 3 revisited: How does running time
change when increasing N?

Figure 5. Running time as a function of N.

Revisiting test 3, with convergence checking and the best found
parameters, the exponential time complexity is clearly shown.
(The scale is logarithmic.) In this way each time the optimal
solution is found.

6. FURTHER PLANS
To solve the zero mutation probability vs. dead-end problem, an
extra function of the convergence checker should be added, which
increases the probability of mutation, if the best fitness values do
not converge. This way, a zero probability might be set as the
initial value.
One might also think about changing the crossover method.
However, this does not make that much difference in efficiency,
since the bits of a chromosome are completely unrelated.

7. CONCLUSION
Logical puzzles, even seems-to-be-simple problems are closely
related to satisfiability problems. In this paper a genetic algorithm
was used to solve a specific type of such puzzles. Genetic
algorithms usually have several parameters. In our case the tuning
of these parameters has a dramatic effect on the performance.
Initial parameters might even be quite far from the optimum.
After probability of mutation and population size have been set, in
some cases, searches may still come to a dead-end, failing to find
an optimal solution at all. Convergence-checking enables the
program to detect these dead-ends and restart the search.
Examining the statistics of runs, the final parameter of dead-end
detection can be set, which enables the application to always
effectively find an optimal solution. We note here that the

parameter CL may depend on the value of N, but analysing our
statistics with N between 20 and 60 the dependence is not clear.

8. ACKNOWLEDGMENTS
The work is supported by -09/1/KONV-
2010-0007 project. The project is implemented through the New
Hungary Development Plan, co-financed by the European Social
Fund and the European Regional Development Fund.

9. REFERENCES
[1] A., S., G., , A.

Genetikus Algoritmusok. Typotex, 2002.
[2] Coley, D.A. An Introduction to Genetic Algorithms for

Scientists and Engineeres, World Scientific Publishing, 1999.
[3] Mitchell, M. An Introduction to Genetic Algoritms, MIT

press, 1996.
[4] Nagy, B. SW-type puzzles and their graphs, Acta

Cybernetica 16 (2003), 67-82.
[5] Nagy, B. Boolean programming, truth-teller-liar puzzles and

related graphs, In Proc. of ITI 2003, 25th International
Conference on Information Technology Interfaces, pp. 663-
668. Cavtat, Croatia, 2003.

[6] Nagy, B. Duality of logical puzzles of type SW and WS -
their solution using graphs, Pure Mathematics and
Applications - PU.M.A. 15 (2005), 235-252.

[7] Nagy, B
programming and related graphs), Szigma 23 (2002), 115-
130.

[8] Nagy, B., Allwein, G. Diagrams and Non-monotonicity in
Puzzles. Diagrams'2004: Third International Conference on
the Theory and Application of Diagrams, Cambridge,
England, Lecture Notes in Computer Science - Lecture Notes
in Artificial Intelligence, LNCS, LNAI 2980: Diagrammatic
Representation and Inference, 82-96.

[9] Nagy, B. Truth-teller-liar puzzles and their graphs, Central
European Journal of Operations Research - CEJOR 11
(2003), 57-72.

[10] Nagy, B. SS- -
-type truthteller-liar puzzles and their

graphs), Alkalmazott Matematikai Lapok 23 (2006), 59-72.
[11] Smullyan, R. What Is the Name of This Book? Prentice-Hall,

1978.
[12] Smullyan, R. The Lady or the Tiger? Alfred A. Knopf, Inc.,

1982.
[13] Smullyan, R. The Riddle of Scheherazade: And Other

Amazing Puzzles, Ancient and Modern. Knopf, 1997

5 10 15 20 25 30 35 40 45 50

Running time 74,8 277,2 680,9 2093,3 3956,7 10048,5 29117 130529 307417 855594

1

10

100

1000

10000

100000

1000000

PS = 55, CL = 40, PM = 1/(4N)

22

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Heuristics for the multiple depot vehicle scheduling
problem
Balázs Dávid

Institute of Informatics

Faculty of Science and Informatics

University of Szeged

Árpád tér 2., 6720 Szeged, Hungary
+36 62 546396

davidb@inf.u-szeged.hu
ABSTRACT
In this paper, we introduce a greedy heuristic for the multiple-
depot vehicle scheduling problem, which gives acceptable results
with good running time for real-life instances. Our method is also
compared to vehicle scheduling models and heuristics found in
literature. All examined heuristics are tested on real-life data
instances.

General Terms
Algorithms

Keywords
Scheduling problem, Vehicle scheduling, IP-based heuristics

Supervisor
Dr. Miklós Krész

1. INTRODUCTION
The vehicle scheduling problem is one of the most important
problems arising in public transportation. The goal is to satisfy
the trips of a given timetable under certain conditions. Literature
has dealt extensively with this problem in the past decades, and
real world applications of these scheduling methods are getting
more and more attention.
The complexity of the problem arises from its size: solving a
problem based on even a small or middle-sized city may not give
a feasible solution in reasonable time (when aiming for an exact
solution). A method needs an acceptable running time to be
efficiently applied in the planning process of a bus company, as
companies usually either plan for a longer period (running many
instances one after the other), or have to make decisions quickly.
An effective decision support system has to provide the results of
several different algorithms for the same problem. The company
can compare and analyze these results, and chose method that fits
their problem the best.
However, such a system can only be used for planning purposes
only if all its algorithms have a fast running time. There are

several factors that influence running time, especially the model
used to describe the problem, and its solution methods. Running
time can also be improved further with the help of proper
heuristics, which also have to be considered.
The outline of this paper is the following: first, the vehicle
scheduling problem is presented along with two of its widely used
IP representations. After this, efficient heuristics from the
literature are introduced to the problem, each using a different
approach to decrease the running time of the solution method. We
also propose an own greedy heuristic approach for the problem,
which is based on the idea found in [6]. These methods are tested
on real-life instances (provided by the Szeged City Bus Company,
Tisza Volán Zrt.), and the results are compared and analyzed.
Finally, the conclusions are drawn and further research
possibilities are addressed.

2. THE VEHICLE SCHEDULING
PROBLEM
The vehicle scheduling problem satisfies a set of timetabled trips
using a number of given vehicles. Every trip has a departure and
arrival time, a starting and ending location, and a set of vehicles
which are able to serve the trip.
The vehicles can be classified into different groups (called
depots), each depot having a constraint on the number of its
vehicles. Depot classification can depend on certain features of
the vehicles (eg. solo, elongated, fuel type), or its geographical
location.
Other types of trips also have to be considered for the problem:
vehicles can use deadhead trips to get from a geographical
location to another, and every vehicle schedule starts with a pull-
out trip (from the depot), and ends with a pull-in trip (to the
depot). These trips are also referred to as unloaded trips, because
no passengers are transported on the vehicles during them.
Timetabled trips will be referred to simply as trips the rest of the
paper, if the context allows it (the names of other trips remain
unchanged).
Our aim is to give a schedule, where each trip is executed exactly
once, and the costs arising from the one-time daily cost, and the
distance-based cost of the vehicles is minimal. In a real-life
situation, other constraints may arise for the problem (eg. the
refuelling of vehicles [2]). These are not considered in this paper,
as it is enough to deal with basic vehicle schedule when planning
for a longer time period.
According to the number of used depots, literature discusses two
main types of the problem: single depot vehicle scheduling
problem (SDVSP), and multiple depot vehicle scheduling
problem (MDVSP).

23

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

2.1 Single and multiple depot
Complexity of the vehicle scheduling problem depends on its
number of depots. SDVSP problems can be modelled as a
minimal-cost flow, and even problems with several thousand trips
can be solved efficiently with special algorithms.
As SDVSP problems can be solved in polynomial time [1], they
are also useful for providing initial solutions or used as sub-
problems for certain MDVSP heuristic approaches. While SDVSP
problems can be solved easily, two or more depots results in an
NP-hard problem.
MDVSP problems have been first studied by Bodin et al. [5], and
their NP-hardness in case of two or more depots was shown by
Bertossi et al. [4]. The MDVSP results in a number of vehicle
schedules, where each given trip is satisfied exactly once, and the
trips scheduled to a vehicle can be carried out from the same
depot (the depot of the vehicle).
The vehicle scheduling problem can minimize the number of
vehicles used, the amount of distance covered, or a cost function
can be given which takes both aspects into consideration. In this
case, each depot has to be given a general vehicle cost (the
maintenance cost of a vehicle belonging to the depot) and an
operational vehicle cost (which is in proportion to the distance
covered by the vehicle). Let i be a vehicle schedule of the
solution, and d(i) denote the depot used to execute i. Considering
a vehicle from depot d(i) let the general vehicle cost be denoted
by gc(d(i)), and the operational vehicle cost denoted by oc(d(i)).
Furthermore, let dist(i) be the distance covered by a schedule i.
Assuming that we have n schedules, the cost of the problem is

()() () ()()()
1i ..n

gc d i dist i oc d i ,
=

+ ⋅�

which we want to minimize.

In addition to using this cost function, all models and methods
introduced below are able to handle the capacity constraints of the
depot. An overview of different models for both the single- and
multiple depot vehicle scheduling problem can be found in [6].
We will introduce two of these models for the MDVSP.

2.2 Connection based IP model
IP models for the vehicle scheduling problem are widely used,
and dealt with by the literature. One of the most well-know
models is the connection based model.
Trips i and j are compatible, if there is a vehicle which satisfies i
and is able to satisfy j afterwards. If the ending location of i is the
same as the starting location of j, then the only condition is that
the departure time of j has to be greater or equal to the arrival time
of i. In other cases, we also have to take into account the time
needed to carry out the deadhead trip connecting the two
locations. Pull-in and pull-out trips of a depot are always
compatible.
Using the above definitions, a vehicle schedule can be defined as
a series of trips, where each timetabled trip is compatible with the
subsequent trips. In practice, a vehicle schedule stands for the
daily work of a vehicle. A feasible schedule always starts with a
pull-out trip from a depot, and ends with a pull-in trip to the same
depot. Other trips of the schedule can either be timetabled or
deadhead trips.
The main idea behind the connection based model is to connect
all compatible trips with edges.

The following notations have to be introduced: let D be the set of
depots and T be the set of trips. For every t � T let d(t) and a(t)
denote the departure and arrival time of trip t. The set of depots,
which can execute a trip t is denoted by g(t) �� �. Let Td � T be
the set of trips which can be executed from depot d. Similarly,
every d �� D has a s(d) starting and e(d) ending location. The set of
nodes of our network will be the following:

{ }N : d(t) a(t) s(d) e(d)| t T ,d D= ∈ ∈� � �

To define the edges of the network, let

(){ }d
dA : d(t),a(t) | t T= ∈

be the set of trips that can be served by depot d.

Let

(){ }d
dB : a(t),d(t') | t ,t' T are compatible trips= ∈

be the set of deadhead trips of depot d.

Let

() (){ }d
dP : s(d),d(t) , a(t),e(d) | t T= ∈

be the set of pull-in and pull-out trips of depot d.

Using the sets presented above, the set of edges of the network is:.

(){ }d d dE : A B P e(d),s(d) for every d D= ∈� � �

where (e(d), s(d)) are the circulation edges of the network.

Based on the sets and notations introduced above, a feasible
solution of the MDVSP can be determined for network (N, E). For
every edge of the network, an integer vector � has to be defined.
A vector component belonging to an edge e of depot d is denoted

with d
ex . Formalizing the problem:

() 1d
d(t),a(t)

d g(t)

x , for every t T,
∈

= ∈� (1)

0d d
e e

e n e n

x x , for every d D and n N,
+ −∈ ∈

− = ∈ ∈� � (2)

{ }0 1d
ex , , except for circulation edges,∈ (3)

d
ex integer, (4)

where n+ is the set of incoming edges to node n, and n- is the set
of outgoing edges from node n.

24

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

According to (1) each trip has to be executed exactly once, while
(2) shows that every vehicle arriving to a geographical location
has to leave that location. Constraints for the number of vehicles
in each depot can be set as an upper bound for the circulation
edges of the corresponding depot.

Any flow satisfying the conditions above can be a feasible
solution of the problem. For an optimal solution, we have to
minimize

e e

e

c x ,�

where ce is the cost of edge e.
The main drawback of the connection based model comes from
the fact that it represents connections between all compatible
trips. The number of compatible trips is high even with a small
number of timetabled trips, due to the possible deadhead trips
and the number of depots. This makes the size of the problem so
large that it can not be used effectively on real-life data, which
consists of several thousand trips.

2.3 Time-space network
The time-space network has been introduced to vehicle
scheduling by Kliewer et al. [7], and is able to efficiently solve
even large-sized real-world MDVSP instances. As it was pointed
out at the connection based model, the number of edges
connecting compatible trips is high, while only a few of these are
used in a feasible vehicle schedule. Dropping any of these
connections would lose the optimality of the solution. However,
the number of edges has to be reduced for solving the problem
efficiently.
The time-space network solves the problem mentioned above. The
model uses two dimensions, time and space. Space stands for the
set of geographical locations, while time means timelines assigned
to every location. The arrival and departure times are denoted on
these timelines, with each point in time being a node of the model.
As can be seen, the time-space network assigns the nodes to
geographical locations as opposed to the connection based
network. Apart from this difference, the set N of nodes of the
network can be defined similarly to the connection based
approach. Ad can also be given in a similar way for each depot d �
D, and Pd can be defined with the help of the time-lines associated
with the depots.
The definition of deadhead trips is the main difference between
the two models. The timelines used by the time-space network can
be used to aggregate deadhead trips, with the help of newly
introduced waiting edges connecting adjacent nodes on the
timeline. This method significantly reduces the size of the
problem. Waiting edges always connect two adjacent nodes on the
appropriate timeline. Denoting the set of waiting edges with Wd

for a depot d � D, the set of edges of the network is

(){ }d d d dE : A B P W e(d),s(d) for every d D= ∈� � � �

The IP model of the network is similar to the one presented at the
connection based model:

() 1d
d(t),a(t)

d g(t)

x , for every t T,
∈

= ∈� (5)

0d d
e e

e n e n

x x , for every d D and n N,
+ −∈ ∈

− = ∈ ∈� � (6)

0d
ex ,≥ (7)

d
ex integer, (8)

where n+ is the set of incoming edges to node n, and n-is the set of
outgoing edges from node n.

3. SOLUTION METHODS
Using the time-space network introduced in the previous section,
we present some solution methods for the MDVSP. An important
aspect studied in all of these methods is the applicability on real-
life problems. For effective use in public transportation, solution
should be obtained fast, and the cost should also be close to the
optimal cost of the problem. First, the traditional approach of
solving our problem with an MILP solver will be presented, then
heuristics from the literature are introduced.

3.1 MILP solver
The first method we applied for solving the IP problem of the
time-space network was using an MILP solver (in our case:
SYMPHONY1). Due to the large size of the problem, only the
first feasible solution was found. The cost of the resulting
solution was nearly optimal (gap: 0,1-0,2% from the optimum),
but running time was slow in many cases (even 1-2 hours for
some instances).
Companies execute the method for a whole planning period,
which usually is a time span measured in months. This planning
period has several different day-types (11 in the case of Szeged),
and the vehicle scheduling problem has to be solved for all of
these. Solving the IP for all these problems would take a large
amount of time.
As it can be seen above, a fast algorithm has to be applied for the
problem, if we want to use it as the part of a decision support
system. For this, we examined several different heuristics from
literature for the problem.

3.2 Rounding heuristic
As the running time of the process mainly consists of finding the
feasible integer solution of the relaxed LP-problem, accelerating
the IP-solution process can result in a decrease in the running time
of the algorithm.
The difference between the values of the LP-relaxation of the
MDVSP, and the optimal integer solution is usually small, as
large percent of the variables has an integer value in the solution
of the LP. The heuristic approach proposed by Suhl et al. [9] aims
to utilize this feature. The IP solver is stopped, when certain
criteria are met (which can be e.g. the number of visited nodes, or
the difference between the cost of the actual problem and the LP
relaxation), and a rounding algorithm is executed for this partial
solution. The algorithm uses two rounding intervals [0,rl] and
[ru,1], where 0 �� rl �� ru �� 1. Consider a variable xj, and let xj –
[xj] = fj, where 0 � fj � 1. The value of xj is rounded according to
the following rules:

1 http://www.coin-or.org/SYMPHONY/

25

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

- 0j jif f ,rl , then x� �∈� �� � � �

- 1j jif f ru, , then x� �∈� �� � � �

Several rounding iterations can be carried out sequentially,
providing that the resulting LP still gives a feasible solution. If no
variables were rounded, then the rounding intervals can be
extended. After the rounding steps, the branch-and-bound IP
solver is executed again for the LP. The process is repeated until
all variables are fixed, or the problem has no feasible solution.

The gap from the optimum still remains around 0,2%, and there is
a decrease in running time. However, the running time of some
instances can still take around 1 hour to solve, which is
inadequate time in certain cases.

3.3 Variable fixing heuristic
This heuristic is used to further decrease the size of the MDVSP.
The basic idea of variable fixing is to solve simplified problems
based on the original model, and look for series of trips that are
common in all solutions. If such trips exist, they are considered as
stable chains, and supposed that they also appear the same way in
the global optimum. Stable chains are denoted in the model as one
huge trip, thus significantly decreasing the size of the problem.
After all stable chains have been found, the resulting smaller
MDVSP can be solved with a MILP solver.
Kliewer et al. [8] proposed to use SDVSP sub-problems for all
depots of our MDVSP as simplified problems. For a depot d , we
solve the following sub-problem:
- The capacity of the depot is equal to the sum of all depot-

capacities of the MDVSP.
- Only those trips are considered, which can be executed from

depot d .
After each SDVSP sub-problems are solved, the solutions are
used to create stable chains. Using these stable chains, a new
MDVSP problem is created, which has the following properties:

- The number and capacity of the depots are the same as in the
original problem.

- The set of trips of the new problem consists of the trips not
included in any of the stable chains and a newly created trip
for each stable chain. The cost of these new trips is equal to
the sum of the cost of the trips that are in the stable chain they
represent, and has the departure time and starting location of
the first trip of the chain, and the arrival time and ending
location of the last trip of the chain. These trips can be
executed from any depot

Solving this MDVSP, the final solution can be acquired by
substituting back the original trips instead of the stable chains.

4. A GREEDY VARIABLE FIXING
HEURISTIC
The heuristic we propose is also based on the method of creating
stable chains. Initially, an SDVSP problem is solved, which is
created by transforming the MDVSP in the following way:
- The capacity of the depot is equal to the sum of the capacity

of all the depots in the MDVSP.
- The SDVSP contains all the trips from the MDVSP, and all

trips can be executed from the single depot.

This new SDVSP problem is solved, and stable chains are formed
from this solution using a greedy method. The method assigns a
value to the depots of the MDVSP using the following function:

1
d_c(d) d_b(d)⋅ +

ε
,

where d_c(d) is the daily cost, and d_b(d) is the distance-based
cost of depot d and parameter � 	 0 is an arbitrary real number.
Our test cases use � = 210. The average distance covered by a
vehicle in a day around 210 km, thus the function above gives an
estimate for the total cost of the vehicle to cover 1 km. Depots
are ordered into a list L according to this cost.

For every depot d of the list L (starting with the one with the
lowest cost), the greedy algorithm examines all the vehicle
schedules in the result of the SDVSP. If subsequent trips are
found which can be executed from this depot, they are considered
as stable chains. These trips are flagged, and cannot be the part of
other stable chains.

After all depots are examined, a new MDVSP problem is created.
This procedure is similar to the one described in 3.3, the only
difference arises when introducing the new trips. These trips can
only be executed from depots that satisfy every trip of the stable
chain that the new trip represents. Let D be the set of depots of the
problem, and J be the set of all trips. Let V be a set to store all
flagged trips, and S be a set containing chains of trips, which are
the stable chains. Let L be a list of trips that is used to build up the
chains. Using the notations above, the algorithmic code of the
problem can be seen on Figure 1.

Greedy_variable_fixing

D ← depots with assigned values

S ,V ,L←∅ ←∅ ←∅

while D is not empty, choose d D∈ with lowest value

 solve an SDVSP with all j J∈ trips

 j = first trip of the solution, where j V∉

 while j can be executed from depot d D∈ , and j V∉

 L j←

 V j←

 j next _ trip _ of (j)= in the solution

 if 1L >

 S L←

 else delete j from V

 L ←∅

 Delete d from D

 Return S

Figure 1: The greedy variable fixing heuristic.

26

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

As the running time of the heuristic was fast, further changes have
been experimented with to improve the cost of the solution, with a
minimal increase in the running time.

The more trips there are in a stable chain, the higher the chance is
that the greedy method chooses an inadequate trip regarding
optimality, making a cost of that stable chain higher. To avoid
this, a constraint can be introduced to limit the length of the
chains.

The SDVSP problem is created the same way as before, the only
difference is in making the stable chains: if the number of trips in
a chain reaches the constraint, the chain is not extended further.

Experience shows that limiting the length of the stable chains
results in a solution with better cost, but has an increase in
running time. Though there have not been enough tests
concerning this observation yet, it looks a promising direction for
further research.

5. TEST RESULTS
The above methods were tested on real-life data instances in the
city of Szeged, Hungary. The company uses 14 different day-
types (called combinations). For a normal planning period (2
months in the case of the company), all 14 combinations have to
be calculated, and the schedule for a given day depends on the
combination type of the day.
The results of the algorithms are presented on 4 day-types, and
the properties of each can be seen in Table 1 below. The
combinations with higher number of trips (szeged1 and szeged4)
are working days of the week, while szeged2 and szeged3 are
instances taken from a Sunday and Saturday, respectively.
The running time in the table is the time in seconds needed to
find the first feasible solution using the SYMPHONY solver on
the time-space network model. As mentioned before, the
maximum gap of all first feasible solutions from the optimum
could be calculated, and gave a value of 0,2%.

Table 1. Properites of data instances

Number
of trips

Running time
(s)

“Bad”
schedules

szeged1 2765 9503 1

szeged2 1826 1500 5

szeged3 2033 2837 6

szeged4 2758 7119 2

As can be seen, the running times of the instances are all above
1,5-2 hours. This is not acceptable in most cases, as the vehicle
schedules are usually given for a longer planning period (several
weeks or months), and calculating the schedules for all day-types
would take more than a day this way.
The results of the heuristics will be examined using three aspects:
the decrease in running time compared to the MILP solution, the
maximum gap to the optimal solution and the structure of the
schedules, which is explained below.
 Decision support systems usually do not consider vehicle
scheduling as a stand-alone problem, but use it as an initial input
for driver scheduling and rostering. These problems have
different working constrains of the drivers that have to be
fulfilled, the most important is the maximum consecutive driving
time without any rest, and the total length of the schedule given

to the driver. Our vehicle schedules will also be analysed using
this aspect, and if a schedule violates any of the two rules
mentioned above (either by being “too long” for one driver, or
“too dense” to give proper resting time), it is considered as a
“bad” schedule regarding the driver modules. As can be seen
from Table 1, the first feasible solutions give schedules with
good structure in the aspect of drivers.
The results given by the rounding heuristic (see: Table 2) stay
close to the original gap from the optimum, and also improve the
running time significantly. There are even cases (see szeged3),
where we get the exact same solution as the first feasible, but
with an improved running time. The structure of the solution
stays very similar to the ones in Table 1, so the number of bad
schedules is also low (in the case of these 4 instances, it is
exactly the same). However, running time is still around 1 hour
in some cases, so this heuristic is still not suitable to make quick
decisions. This heuristic is recommended to be applied when
running time is not an important aspect, but it is guaranteed to
give well-structured schedules with low cost.

Table 2. Results of the rounding heuristic

Time
ratio (%)

Max. gap to
opt. (%)

“Bad”
schedules

szeged1 38,0301 0,2584 1

szeged2 57,8000 0,2000 5

szeged3 66,0909 0,2000 6

szeged4 40,2304 0,2061 2

Results of the variable fixing heuristic show an even better
decrease in running time: each instance can be solved around 5-
15 minutes, with the cost of increasing the gap from the
optimum. However, the structure of the resulting schedules is
“bad” considering driver rules. This comes from the property that
the algorithm produces really dense and really long stable chains
(as there are many trips in our test cases that can be executed
from all depots), which result in the schedules themselves being
long and dense. Results can be seen in Table 3.

Table 3. Results of the variable fixing heuristic

Time
ratio (%)

Max. gap to
opt. (%)

“Bad”
schedules

szeged1 11,6069 0,3604 12

szeged2 16,4000 0,3110 11

szeged3 10,4688 0,6474 20

szeged4 9,5098 0,3557 12

The results of the greedy heuristic can be seen in Table 4. The
heuristic needs only a couple of minutes (under 4-5 in all test
cases) to finish. However, the gap from the optimal solution has
risen to around 1-1,5%, which value is still acceptable
considering a real life application. As opposed to the variable
fixing heuristic, the greedy method fixes significantly more trips
(~66% in comparison with ~33%) into stable chains, which
significantly reduce the size of the problem. However, fixing
trips to a stable chain means that their relation to other trips is
already determined. Some trips will be placed in different
schedules than it would be in the optimal scheduling, and

27

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

increasing the cost this way. Limiting the greedy choice with
alternative constraints (e.g. limit the size of the chains, or the
types of chosen trips) can lead to a solution with a better cost, but
this would mean a larger problem size, which results in an
increase in running time.
The structure of the schedules is also acceptable, the greedy
heuristic stays close to the low number of bad schedules
provided by the first two solution methods.

Table 4. Results of the greedy heuristic

Time
ratio (%)

Max. gap to
opt. (%)

“Bad”
schedules

szeged1 4,4828 1,3168 3

szeged2 9,4000 1,0379 7

szeged3 10,0458 0,3459 7

szeged4 4,8883 1,3176 2

6. CONCLUSIONS AND FUTURE WORK
We presented the vehicle scheduling problem, and examined
models and heuristics from literature, which may prove to be
useful on real-life instances, and especially in the decision
planning process of a transportation company. A main criterion
of these heuristics was a good running time.

With the help of the examined methods, a new greedy heuristic
was introduced for the problem, which gives a significant
decrease in running time, while its gap from the optimum stays at
an acceptable level. It is also important to note, that the
structures of these schedules are also good, considering the
further application of them as an input to driver scheduling and
rostering.

Test results show that our heuristic can be improved further. The
present greedy choice has numerous properties that can be
limited, and this way cost can be improved with the decrease of
the running time. This method is still being tested and analysed.

Alternative options can also be introduced for the greedy choice
instead of the current cost-based approach. Such methods (eg.
based on the number of depots that are able to serve the trips of a
chain) are currently being developed..

7. ACKNOWLEDGEMENT
This paper was partially supported by Szeged City Bus Company
(Tisza Volán, Urban Transport Division).
I would also like to thank Zsuzsanna Papp and József Békési for
their help with the implementation of the time-space network and
the rounding heuristic.

8. REFERENCES
[1] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows.

Nemhauser, Rinnooy Kan, and Todd, IV, 211-369, 1989.
[2] Balogh, J., Békési, J., Galambos, G., Krész, M.: An

Assignment Model for Real-World Vehicle Scheduling
Problem with Refueling. Proceedings of the 9th Workshop
on Models and Algorithms for Planning and Scheduling
Problems, Abbey Rolduc, The Netherlands, June 29 - July
03, 2009, pp. 229

[3] Békési, J., Brodnik, A., Krész, M., Pas, D.: An Integrated
Framework for Bus Logostics Management: Case Studies.
Logistik Management 5., pp. 389-411, 2009.

[4] Bertossi, A.A., Carraresi, P., Gallo, G.: On Some Matching
Problems Arising in Vehicle Scheduling Models. Networks
17, pp. 271-281, 1987.

[5] Bodin, L., Golden, B., Assad, A., Ball, M.: Routing and
Scheduling of Vehicles and Crews: The State of the Art.
Computers and Operations Research 10., pp. 63-212., 1983.

[6] Bunte, S., Kliewer, N.: An Overview on Vehicle Scheduling
Models.

[7] Kliewer, N., Mellouli, T., Suhl, L.: A time-space network
based exact optimization model for multi-depot bus
scheduling. European Journal of Operational Research 175.,
pp. 1616-1627, 2006.

[8] Kliewer, N., Mellouli, T., Suhl, L.: Solving large multiple-
depot multiple-vehicle-type bus scheduling problems in
practice. OR Spectrum 27. pp. 507-523, 2005.

[9] Suhl, U.H., Friedrich, S., Waue, W.: Progress in solving
large scale multi-depot multi-vehicle-type bus scheduling
problems with integer programming. Wirtschaftinformatik
Proceedings, Paper 81, 2007.

28

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

 BAYESIAN GAMES ON A MAXMIN NETWORK ROUTER
Grigorios G. Anagnostopoulos

Department of Electrical and Computer Engineering, Democritus University of Thrace
67100 Xanthi, Greece

Telephone: 2541020486 (0030)
griganag@ee.duth.gr

ABSTRACT
In this paper, we consider network games with incomplete
information. In particular, we apply a game-theoretic network
model to analyze Bayesian games on a MaxMin router. The
results show that the MaxMin mechanism induces desirable Nash
equilibria.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity Nonnumerical Algorithms and Problems;
G.2.2 [Mathematics of Computing]: Discrete Mathematics
graph theory, network problems

General Terms
Algorithms, Theory

Keywords
Bayesian games, MaxMin fairness, Network games, Nash
equilibrium, Algorithmic Game Theory

Sypervisor: Pavlos S. Efraimidis

1. INTRODUCTION
The interaction of independent Internet flows that compete for
common network resources like the bandwidth at routers has
recently been addressed with tools from algorithmic game theory.
In this context, the flows are considered independent players who
seek to optimize personal utility functions, such as the
bandwidth. The mechanism of the game is determined by the
network infrastructure and the policies used. The solution
concept commonly used is the Nash equilibrium (NE), i.e., a
state of the game in which no player has anything to gain by
unilaterally changing her strategy.
An assumption underlying Nash equilibria is that each player

 To do so, a player must know the game she is playing. However,
in many situations the participants are not perfectly informed

may not know each
-flows competing for bandwidth of

a network may not know the exact number of active flows etc.
The model of a Bayesian game [4], generalizes the notion of a
strategic game to cover situations in which each player is
imperfectly informed about some aspect of her environment
relevant to her choice of an action. The players may be uncertain
about the exact state and instead assign a probability distribution
over the possible states
The model that we will use, the Window-game (presented in [2]),
has a router and N flows, and is played synchronously, in one or
more rounds. Every flow is a player that selects in each round the
size of its congestion window. The congestion window of a TCP
flow is a parameter that determines the maximum number of
packets that the flow is allowed to have outstanding in the
network at each moment [1]. Real TCP flows adjust their
congestion window to control their transmission rate. The router
of the Window-game (the mechanism of the game) receives the
actions of all the flows and decides how the capacity is allocated.
The utility or payoff P(i) of each flow i is equal to the capacity
that it obtains (transmitted packets) from the router in each round
minus a cost g for each dropped packet, that is:

Pi = transmittedi g droppedi (1)

We assume that the cost g for each dropped packet is constant for
a certain game and is the same for all players. The general form
of the games we study is a Window-game with a router of
capacity C and N players. The game is played in one round and
each player i chooses its window size wi C. The router policy is
MaxMin. The cost for a lost packet is g. The number of the active
players (players that can submit packets) of each round is a
random variable n. The uncertainty stems from the fact that
players-flows may not know the total number of players that are
active in each round but only a corresponding probability
distribution. Let w=C/n be the Fair Share (FS) of each player
when n active players compete for a capacity C. In case of
overflow, a MaxMin fair router satisfies any request that does not
exceed FS and splits the remaining router capacity (if any) to
flows with larger windows. The complete information version of
this game has been studied in [2].

In practice, real TCP flows are actually playing a repeated game,
which means that the flow will, in most cases, have an estimation
of its fair share from the previous rounds. The probability
distribution over the possible states of the game is a way of
adding this partial information to our model.

29

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

We first analyze the NE of some simple toy-case scenarios and
then proceed to the main result of this work; an expression for
symmetric NE of an interesting class of symmetric Bayesian
Window-games. For simplicity, we will assume in this work that
all FS values are integers.

2. TOY CASES OF NON-SYMMETRIC
GAMES
We present some toy-cases of non-symmetric Bayesian games on
a MaxMin router.
Game 1. Two players A and X and router capacity C=12. Player
A is always active, while player X receives a signal that informs
her weather she is active or not. The probability of each case is
1/2. While both players know all the above information, the

Solution sketch. All strategies with w<FS=6 are strictly
dominated by the strategy w=FS and, thus, can be excluded. For
g=0, all the remaining strategies (6 w 12) give the same constant
payoff P(w)=6 for both players, since the whole capacity is used
and they both transmit a window size equal to FS=6, with zero
cost for the lost packets (if w>6). By definition, player X can be
active or not. When we refer to player X without any other
specification, we will implicitly refer to the active type of X. The
same holds for the rest of this work. For g>0, player X knows that
A will play at least the FS. Thus, a capacity equal to FS remains
available for X. There is no incentive for X to leave the w=6
strategy, since a greater w will only reduce her payoff due to the

s equal to the sum of the
products of her payoff at each of the two possible states with the
probability of each state. It can be shown that these are the NE
(wA,wX) of the game:

Table 1. The NE of Game 1

g g=0 0<g<1 g=1 g>1
NE 12, 6x x 12,6

,6 6x x 6,6

Game 2. Same as Game 1, but with an additional player B, who,
just like A, is always active.
Solution sketch. With an analysis similar to Game 1, it can be
shown that these are the NE (wA, wB, wX) of the game:

Table 2. The NE of Game 2

g g=0 0<g<1 g=1 g>1
NE , ,x y z , , 6x y ,

4z

(6,6,4) (x,y,4)
, 4,6x y

(4,4,4)

Comments. It is clear that with MaxMin, more information leads
generally to NE with better outcomes for players with this
information. In many similar scenarios, the choice of g>1
generally gives fair NE.

3. A GENERAL SYMMETRIC (GS) GAME
Game GS1. Game with N players in which the number of active

 In this game,
each player receives a signal that informs her if she is active.
Every active player assigns equal probability (p=1/N) to each of
the N possible game sta -1other players are
active, respectively.
For each of these N different cases of the Bayesian game, there is
a different FS. For example if =5 and C=60:

Table 3. The possible FS values of Game GS1

n 1 2 3 4 5
FS 60 30 20 15 12

Due to the symmetric nature of the game, we will focus on its
symmetric NE. Thus, we assume symmetric profiles for the game,
i.e., all active players are using the same strategy w. In case of
symmetric profiles, if the window size w is w>FS, then, for each
flow, a number of packets equal to the FS will be transmitted,
while for the remaining (w FS) dropped packets there will be a
reduction of the payoff proportional to the cost factor g. More
precisely, the payoff of each flow will be:

payoff FS w FS g = FS (1)g w g

In the cases where w FS, the payoff is equal to the window size,
so payoff=w.
If we analyze every scenario of this game, we notice that the
payoff function (PF) of each flow is a piecewise linear function of
w. The following analysis illustrates how to determine the PF for
the above example

1. For window sizes w, such that w 12:

There are 1,2,3,4 or 5 active players with probability 1/5 for each
case. In all these cases, the window size is smaller than the
equivalent FS. So in any of these cases payoff=w. Thus, the
expected payoff P(w) is:

1 1 1 1 1
5 5 5 5 5

P w w w w w w w

2. For window sizes w, such that 12<w 15:

In the case where all 5 players are active, then w>FS=12 and

payoff FS (1) 12 (1)g w g g w g

In the remaining cases with 4, 3, 2 and 1 active player(s),
payoff=w, because the equivalent FS of each case is greater than
any possible value of w in (12, 15]. Thus:

1 1 1 1 1 12 (1)
5 5 5 5 5

P w w w w w g wg

4 12 1 4 12(1) (1)
5 5 5 5 5

gP w w g wg w g

Working in a similar way, we obtain that:

30

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

3. For 15<w 20 the payoff is:

1 1 1 1 115 (1) 12 (1)
5 5 5 5 5

P w w w w g wg g wg

12 153 2 3 2 27(1) (1)
5 5 5 5 5

gP w w g wg w g

4. For 20<w 30 the payoff is:

1 1 1 1 120(1) 15(1) 12(1)
5 5 5 5 5

P w w w g wg g wg g wg

12 15 202 3 2 3 47(1) (1)
5 5 5 5 5

gP w w g wg w g

5.For 30<w 60 the payoff is:

1 1 130(1) 20(1)
5 5 5

P w w g wg g wg

1 115(1) 12(1)
5 5

g wg g wg

12 15 20 301 4 1 4 77(1) (1)
5 5 5 5 5

gP w w g wg w g

In the above analysis we can observe how the PF changes with
respect to the intervals that are defined by the possible FS values.
By generalizing the above analysis to any number of players N,
we obtain that:

Z (1) , X Yg CP w w g w
N N N

(2)
 , CP w w w

N

where X,Y and Z are variables, whose values depend on the
parameters of the game instance.

Theorem 1: In a MaxMin game with capacity C and cost g,
and a random number n of active players, where n is
uniformly distributed in 1,2,.., or N, the payoff function (PF)
for symmetric profiles is:

1

1 (()) (1)
1

N a

i

CP w w a N a g g
N N i

 ,

1,2... 1 ,
1

C Ca N w
a a

 , CP w w w
N

Proof: We will derive closed form expressions for the terms X, Y
and Z of Equation 2. The term X is the number of the
terms, which is simply the number of the cases (game states)

-
terms, which corresponds to the number of the cases where w FS.
So, we have shown that X+Y=N.
For N players, the possible FS values define a set of N-1

-1, let s be the interval
+1 and n= active players. That is, s is

the following interval:

1
C Cw

a a

Note, that gives the number of possible FS values (number of
the game-states) where w FS at the corresponding s interval.
That is because for w s ,

...
1 2 1

C C C Cw
a a a

As noted earlier, the number of cases where w FS is equal to X.
Thus, X= . From X+Y=N we conclude Y=(-). In the analysis
of the PF for =5 and C=60, as well as for any N and C, we
observe that Z is the coefficient of the term (g+1)/ at every
interval for w, defined by the possible FS values. The value of Z
is equal to the s
possible values of w at the specific interval. For example, for

=5, C=60 and 30<w 60, the coefficient of (g+1)/ is
(12+15+20+30), which corresponds to the sum

...
1 1

C C C
N N a

In general, variable Z is equal to the sum

1 1

N a

i

CZ
N i

-1, let g be

a
ag

N a

Then, the symmetric profile w=C/ gives the best possible
payoff, if

0 g g1, when =1,
g -1 g g , when -1.

If g is greater than gN-1, then w=C/N gives the best possible
payoff. There is an optimal strategy w for each such interval of
g. Note that when g has one of the boundary values g1,
g2 N-1 it belongs to two intervals in the above definition.
For boundary values of g, all values of w in the closed interval
defined by the two optimal values for w, give the best possible
payoff.

Proof: Differentiating P(w) with respect to w (for each interval s ,
since P(w) is a piecewise function) of Theorem 1 and setting it
equal to zero we obtain:

() 0 () 0 dP w aa N a g g
dw N a

31

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

By solving the above equation for each of the s intervals, we can
find the value of g for which the slope of P(w) is zero. Low values
of the cost factor g provide incentives for the flow to play
aggressively. Consequently, for very low values of g, starting from
zero, the slope of P(w) is positive for all w<C. For larger values of
g, strategies with large window sizes will suffer larger penalties
for dropped packets. There is a boundary value of g (dP(w)/dw=0)
at which P(w) remains the same for all values of w s1. Any
greater value of g will make the slope of P(w) at s1 negative.

In Figure 1, each curve represents the function P(w) for a specific
value of g. The curve (g=0) gives the best P(w) for every w among
all curves, since it incurs no penalty. For all other curves, we
observe that the slopes gradually decrease as the value of w
increases, and in some curves the slope becomes negative (e.g.

The curves of Figure 1 reveal a simple procedure to find the
optimal symmetric profile for each corresponding value of g.
Given a specific value for g, we can start from interval s1, which
involves the greatest values of w, and check one-by-one the slope
of all the intervals, in search of the interval with the largest values
of w with non-negative slope. The upper bound of this interval
will give the best possible payoff.
n the special cases where the derivate equals zero, all values of w

in that interval achieve the best possible payoff. In the rest of this
work, when the best payoff is achieved by an interval of values,
we will simply work with the upper bound of the interval. The
upper bound is always one of the possible FS values.

Theorem 3: The symmetric profiles proposed by Theorem 2
are symmetric NE of the game.

Proof: To prove that these strategy sets are NE, we will show that
no player has an incentive to unilaterally differentiate her strategy.
Let wk be the common strategy with the best payoff and player A
the only player who changes her strategy from wk to wA k.

1. Let wA<wk.
Let FSi be the FS when i players are active. Assume i such that:

FSi+1< wA i
Player A will receive a payoff equal to:

 wA , for each state with j=
 [FSj - (wA- FSj , for each state with j=i+1,..,N active

players.
This is because the transmission of the window size is guaranteed
if the window size does not exceed the FS of the state. If wA

exceeds the FS of the state, since the common strategy wk is
wA<wk, all players play above the FS, therefore they all receive
the FS (of the state) minus the cost of their extra packets which
are dropped.
The way we calculate the expected payoff of player A as a
weighted average of the payoff of each possible state is given as
the sum of exactly the same terms that are summed in the general
equation of Theorems 1. Thus, when player A unilaterally
differentiates her strategy from wk to wA, where wA<wk, she
receives the same payoff as if all players had chosen as common
strategy the symmetric profile with window size wA. In Theorem 2
we proved that the symmetric profiles that are proposed give the
best possible payoff among all symmetric profiles.
Consequently, for one player who unilaterally differentiates her
strategy from the symmetric profile wk to a strategy wA it holds:

P () , A k A kw P w w w

2. Let wA>wk.
Let k be the number of players that corresponds to the fair share
FS that is equal to the best symmetric strategy wk (FSk=C/k=wk),
as given by Theorem 2. Let wA=wk+x. We partition the field of
possible values of wA into intervals.

2.1. Let wA (wk,2wk].
Then x (0, wk]. Player A will receive a payoff equal to:

 wA, for each state with j= -1 active players.
 [FSj - (wA - FSj , for each state with j=k,

k+1,..,N active players.
-1 active players, the greatest

congestion occurs at the state where k-1 players are active.
At this worst case, all the other k-2 players choose FSk, so
the remaining capacity for player A is:

 k wA = wk + x
Thus, at these states player A has a successful transmission
of her window size. On the other hand, when k players are
active and all the other k-1 players chose FSk, the remaining
capacity for player A is FSk. Similarly, for all other states
with j=k+1,..,N active players, player A can send

Figure 1. P(w) for several g values (C=12 ,N=3).

32

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

successfully the FSj of each state and will suffer the cost of
her wA-FSj dropped packets.
The terms that we add to find the expected payoff of player A
are equal to the terms that we need to add to calculate the
expected payoff of symmetric profiles at the interval:

1
C Cw
k k

If all players chose a symmetric profile in the interval
(FSk,FSk-1], then they would successfully transmit their
window size at the states where j= -1 players were
active, while at all other states they would successfully
transmit the FS of each state. All symmetric profiles at this
interval will give a lower payoff than the symmetric profile
wk, as shown in Theorem 2, and the linear function would be
decreasing in this interval. Since the payoff for player A with
strategy wA (wk,2wk] when all other players stay at wk is
given by the same decreasing linear function that gives the
payoff of the symmetric profiles of the interval (FSk,FSk-1],
we conclude that:

When one player A unilaterally differentiates her strategy
from the symmetric profile wk to a strategy wA, there is no

wA (wk,2wk], such that P(wA)>P(wk).

Comparing, at each possible state, when
she chooses wA to the payoff she receives when she stays at
wk (let pki be this payoff, where i is the number of active
players of the state), given that all other players play wk, we
notice that with wA player A receives:

 pki+x, for all states with i=1,2,..,k-1 active players
 pki-x

Since P(wA) P(wk),
P(wA)-P(wk)=[x(k-1)/N]- -k+1)/N] 0. (3)

2.2 Let wA (h wk,(h+1)wk], h (2,3,...,k-1].
At these k-2 intervals, we compare again
when she chooses wk or wA, given that all other players play
wk. We notice that with wA player A receives:
 pki + x, for all states with i=1,2,..,k-h active players,

because even when the greatest congestion occurs at the
state where k-h players are active, all the other k-h-1
players choose FSk, so the remaining capacity for player
A is: k A = wk + x

 pki + [C - wk -1)] < pki + x, but with an extra penalty
of A-[C-wk -1)]]>0 for all states with
i=k- -1 active players. Let Q= A-
[C-wk (i-1)]] be this penalty. Let Y such that
[C-wk -1)]+Y=x. Then we will assume that she
receives pki+x with an extra penalty of Z=Q+Y. (We
add and subtract Y).

 pki-x , for
these states all players receive the FSi of each state
minus the cost of their dropped packets. Strategy wA
loses x more packets than strategy wk.

So, for wA (h wk,(h+1)wk], there is:

 a linear increase for each extra packet, similar to
the increase when wA (wk,2wk], for all states with
i=1,2,..,k-h active players;

 a linear increase of the penalty for the dropped
packets for each extra packet, for all states with

;
 an extra penalty, previously named as Z, for all

-1 active players.
So, comparing the payoff of player A for wA and wk, given
that all other players play wk:

P(wA)-P(wk)=[x(k-1)/N]-[x g(N-k+1)/N]-Z,
where Z>0.

(4)

The difference of the first two terms [x(k-1)/N]-[x g(N-
k+1)/N] does not exceed zero, as shown in Equation 3. Since
we subtract a non-negative value Z from a non-positive
difference, we conclude that in Equation 4:

P(wA)-P(wk .
So, there is no wA (h wk,(h+1)wk], h (2,3,...,k-1], such
that P(wA)>P(wk).

Since there is no possible deviation that can offer an improved
payoff to any player who unilaterally changes her strategy, this
strategy set (or else strategy profile) is a NE.

4. CONCLUSION
We examined Bayesian Window-games on a MaxMin router and
showed that the MaxMin queue policy leads to fair NE. The
strategy profiles of the possible NE depend on the value of g. For
plausible values of g (for example g=1), the NE strategy profiles
utilize a sufficiently large part of the router capacity, while being
at the same time absolutely fair.
Finally, we believe that the NE described in Theorem 3 are the
only symmetric NE of the game. In particular, we believe that we
can use the machinery of Theorems 1, 2 and 3 to show this result
and intend to derive a proof in our future work.

5. REFERENCES
[1] Akella, A., Seshan, S., Karp, R., Shenker, S., and

Papadimitriou, C. 2002. Selfish behavior and stability of the
internet: a game-theoretic analysis of TCP. In Proceedings of
the 2002 Conference on Applications, Technologies,
Architectures, and Protocols For Computer Communications,
SIGCOMM '02, 117-130.Ding, W. and Marchionini, G.
1997. A Study on Video Browsing Strategies. Technical
Report. University of Maryland at College Park.

33

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

[2] Efraimidis, P. S., Tsavlidis, L., and Mertzios, G. B.
Window-games between TCP flows. Theor. Comput. Sci.
411, 31-33, 2798-2817, 2010

[3] Papadimitriou, C. 2001. Algorithms, games, and the internet.
In Proceedings of the Thirty-Third Annual ACM Symposium

on theory of Computing (Hersonissos, Greece). STOC '01.
ACM, New York, NY, 749-753.

[4] Martin J. Osborne, An Introduction to Game Theory, Oxford
University Press, 2004, ISBN-10: 0195128958, ISBN-13:
978-0195128956.

34

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

An Extensible Probe Architecture for Network Protocol
Performance Measurement

Univerza na Primorskem

FAMNIT

+386 5 615 75 70

david.bozic@student.upr.si

ABSTRACT

The article describes the architecture, implementation, and
application of Windmill, a passive network protocol
performance measurement tool which enables the
experimenters can measure Windmill in a broad range of
protocol performance metrics both by reconstructing
application-level network protocols and by exposing the

low-level IP, UDP and TCP events such as packet
corruption and length errors, duplications, drops and the
level of application performance. By correlating these inter-
protocol metrics, the normally hidden interactions between
the layers are exposed for examination. A special designed
Windmill is a passive component of the larger Internet
measurement infrastructure. Unlike most tools that focus on
capturing data for post analysis, Windmill was designed to
support continuous passive measurements at key network
vantage points. The architecture allows application-level
protocol data to be distilled at the measurement point for
either on-line analysis or further post analysis. The
extensible architecture enables experiment managers to

Windmill is split into three functional components:
 a dynamically compiled Windmill Protocol Filter

(WPF),
 a set of abstract protocol modules,
 an extensible experiment engine.

Fast WPF and the support for both experiment extensibility
and high-performance protocol reconstruction are the key
contributions of this architecture. Through the combination
of dynamic compilation and a fast matching algorithm,

components in less than 350 ns. Additionally, WPF
addresses some fundamental limitations in past packet
filtering technology by correctly handling overlapping
filters.
Windmill enables the dynamic placement, management,
and removal of long-running experiments, while

accommodating the significant demands for protocol
reconstruction performance. In order for the rational growth
of the Internet to continue, a deeper understanding of the
interactions between its protocols is needed.
 Windmill can be used as an implementation of a passive
application-level protocol performance measurement
device and to explore these interactions in real-world
settings.
In the article Windmill application is presented as a set of
experiments where we can measured a broad range of
statistics of an Internet Collaboratory, the experiments
show the ability of the Windmill to perform on-line data
reduction by extracting application level performance

demonstrated the use of the passive probe to drive a
complementary active measurement infrastructure of the
internet such as servers, without modifying end-host
application or operating system code.

Keywords

Windmill, protocol filter, packet module, passive
measurement, online analysis.

1. ARCHITECTURE

- a dynamically generated protocol filter,
- a set of abstract protocol modules,
- an extensible experiment engine.

The organization of these components is shown in Figure 1.

35

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Figure 1

Dynamically compiled filter matches the underlying
network traffic against the WPF. This filter is constructed
from the set of outstanding packet subscriptions from the

subscriptions act as a filter for each experiment, they
describe which packets the experiment is interested in
receiving. The abstract protocol modules provide both
efficient implementations of target protocol layers and
interfaces for accessing normally hidden protocol events.
Modules are composed to enable the efficient execution of
the protocol stack on incoming packets. The extensible
experiment engine provides an infrastructure for the
loading, modification, and execution of probe experiments.
Additionally, the experiment engine provides interfaces for
the storage and dissemination of experimental results.
Experiments are loaded into the experiment engine through

administrator, once installed in the engine, an experiment
subscribes to packet streams using the abstract protocol
modules. Subscriptions are passed to the protocol filter
which dynamically recompiles its set of subscriptions into a
single block of native machine code. This code is installed
in the kernel for fast matching and multiplexing of the
underlying network traffic. Upon a packet match the
protocol filter sends the packet along with the set of
matching experiments to the packet dispatch routine in the
experiment engine. The packets are then given to each
matching experiment. Each experiment then uses the
abstract protocol modules to process the standard protocol
information in the packet. Rather than starting with the
lowest layer, usually IP, the packet is given to the highest
level protocol module, e.g. HTTP or TCP. These higher

level protocol modules then recursively call the lower
layers of the protocol stack.

After the experiment the results can extract the packet from
processing any of the protocol layers. The results include
the protocol frame or byte-stream service exported by the
lower layers, or protocol events and error conditions
triggered by the packet. The current implementation of
Windmill is based on off-the-shelf software and hardware.
A custom version of the FreeBSD 3.3 kernel serves as the

-based PCs serve as
-effective hardware platform. Currently,

Windmill is being used with broadcast or ring-based
datalink layers, including Ethernet and FDDI.

2. WINDMILL PROTOCOL FILTER

Windmill Protocol filter passively examines all the
underlying network traffic and performs one-to-many
packet multiplexing to the probe experiments this by
constructing an intermediate representation of the
outstanding subscriptions in the form of a directed-acyclic
graph (DAG) which is dynamically compiled to a native
machine language module, and is finally installed in the

traffic with source port A from experiment 1 and a request
for TCP traffic on source port B from experiment 2 would
result in the DAG shown in Figure 2.

Figure 2. Simple DAG representation of two packet
subscriptions.

Windmill Protocol filter can be different from past packet
filters [1], where network packets are passively matched to
a specification and demultiplexed to a single endpoint, in
that it identifies a set of destinations for a packet. By
determining a set of end-points, WPF avoids the subtle
problem inherent in one-to-one matching algorithms of
client starvation from overlapping filters.
One-to-many matching is motivated by the fact that a probe
machine may be executing numerous concurrent
experiments that are interested in some of the same packet
streams. As the streams of packets arrive, the filter for each
experiment must be used to determine which packets are

36

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

sent to which experiments. This can be done at reception
time, where each packet is compared to different

BPF (Berkeley Packet Filter) devices to do the
determination, one for each experiment. Packets can also be
matched to experi
destinations before its reception. Windmill Protocol filter
adopts the latter approach in that it recomputed all possible
combinations of overlapping filters when they are made,
and generates a DAG to reflect these comparisons. Once
the DAG is constructed, it is compiled to native machine
language on-the-fly and installed in the kernel for matching
against incoming packets.
 A message header consists of a set of comparison fields. A
filter is composed of a conjunction of predicates. Each
predicate specifies a Boolean comparison for a particular
field. An experiment registers a filter by supplying a set of
values for one or more of these comparison fields. These
fields can correspond to Internet protocol specific values,
e.g. IP source address or TCP destination port, or they can
be subsets of these values. This allows filtering based on
fields such as the first 24 bits of the IP source address,
commonly used to examine packets from a specific
network.

Table 1. Three overlapping packet filters and a sample input
packet

Table 1 shows how Windmill Protocol filter works,
consider the set of filters, with each filter representing the
packet subscription from one experiment. The table shows
five comparison fields as the basis for three experiments.
Each entry in the table specifies the value to be matched, or

input packet above matches both filters 1 and 2.

The intermediate representation of these filters as a DAG is
shown in Figure 3(a). The vertices represent Boolean
operations on the comparison fields; a match results in a
transition to the right. Furthermore, each vertex is also
labeled with the set of corresponding filters when the
Boolean operation associated with the vertex is true.
Consider the vertex AS = X, which is labeled with the set
{1, 2, 3}.

Figure 3. Part (a) represents the DAG generated from the
three filters shown in Table 1. Part (b) shows an example of a

packet matching filters 1 and 2. Part (c) follows a path
through the DAG of a packet that only matches filter 2.

This indicates that if the IP source address (AS) in the input
packet is X, then the input packet matches all three filters
for the field in question. Consequently, each path through
the DAG corresponds to matching the input packet with a
unique set of the filters. For example, an input packet that
matches the path in Figure 3(b) satisfies both filters 1 and
2, but not filter 3. Similarly, an input packet that matches
the path in Figure 3(c) also matches filter 2, but not filters 1
and 3. Observe that the intersection of the set of labels
associated with the vertices on a path identifies the unique
set of filters that match input packets. To illustrate the
subtle problem associated with packet filters that utilize
most specific matching, reconsider the example in Table 1.
Note that none of the three filters is more specific than the
others.

The sample input packet above matches both filters 1 and
2. In both PathFinder and DPF, the packet filter will supply
the packet to the experiment that matches first in the
corresponding trie data structure [2,3]. This can lead to
starvation of packet destinations whose filter is not the first
to match an incoming element.
Using one-to-many matching DPF or PathFinder, we would
need to use as many trie structures as experiments, resulting
in O(mn) time complexity, where m is the number of
experiments, and n is the number of comparison fields.
Once the subscriptions from each experiment have been
combined into a master filter, the master filter is compiled
into a single block of machine code and loaded into the
running kernel. The goal of this compilation is to reduce
the time needed to process each incoming packet.

37

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Depending on the type of requests we expect to receive
from the experiments, there are several alternative methods
for performing this compilation.
The current version of the WPF assumes that the number of
experiments is small enough for us to sacrifice space in the
resulting code in exchange for speed. This results in filters
that run as fast as other compiled filters.

3. ABSTRACT PROTOCOL MODULES

The abstract protocol modules export interfaces to probe
experiments for both protocol reconstruction and the direct
access to any proto
Through these interfaces, the abstract protocol modules
provide for the breadth and depth of protocol analysis as
well as inter-protocol event correlation. Network protocol
layers are typically designed to hide the details of their
underlying layers, and provide some type of data frame or
byte stream service to the layers above them. The abstract
protocol modules are very similar and can be chained
together to build the service of higher layer protocols from
the bare stream of data packets arriving from the WPF.

either direction by only supplying the TCP module with
captured packets.
The abstract protocol modules intentionally violate the
encapsulation and abstraction of the lower protocol layers
by exporting the details of these layers including protocol
events and data structures. The research experiments can
then correlate this normally hidden data with the
performance of higher layer protocols.

4. COLLABORATORY EXPERIMENTS

Experiments in this article demonstrate the use of Windmill
in a real-world setting by instrumenting a key server in the
Upper Atmospheric Research Collaboratory (UARC) to
gather a broad range of statistics. The use of Windmill for
on-line data reduction is illustrated by the collection of
application level statistics. Specifically, we extract statistics

using post analysis due to the volume of data. The
experiments show how Windmill can be used in
conjunction with an active measurement infrastructure to
obtain snapshots of network metrics that can be temporally
correlated with passive statistics. These statistics were
gathered without modifying the UARC software or host
operation systems; as such it represents an example of
utilizing passive techniques for measuring shrink-wrapped
systems. UARC is an Internet-based scientific
collaboratory [5]. It provides an environment in which a
community of space scientists geographically dispersed

throughout the world performs real-time experiments at
remote facilities.

Essentially, the UARC project enables this group to
conduct team science without ever leaving their home
institutions. This community has extensively used the
UARC system for over four years. During the winter
months, a UARC campaign - the scientists use the term
campaign to denote one of their typically week-long
experiments - occurs around the clock.

The UARC system relies on a custom data distribution
service [4] to provide access to both real time and archived
scientific data. In these experiments Windmill was

servers during the April 1998 scientific campaign. In order
to provide ubiquitous access to the UARC system, users
access the system through the Web via a Java applet. One
consequence of this decision was the implementation of the
data distribution as multiple TCP streams between UARC
servers and the client browsers. During this experiment,
Windmill intercepted all of the data communications
between the main UARC server and its clients. By
reconstructing the TCP and application-level sessions from
these flows, Windmill extracted the UARC data.

The UARC system provides access to data from over 40
different instruments from around and above the world
including the ACE, POLAR, JPL GPS, and WIND
satellites, Incoherent Scatter Radar arrays in Greenland,
Norway, Puerto Rico, Peru, and Massachusetts,
magnetometers, riometers, digisondes and real time
supercomputer models. These instruments supply over 170
distinct data streams to the scientists. The goal of our
experiments was to obtain user-level performance statistics
for analysis by behavioral scientists, such as when and to
which instruments the users connected, and what time
ranges of data they requested. These statistics can be
correlated with chat room logs to model collaboration at a
very high level. Similarly, we wanted to determine what

participation. A full analysis of these experiments is outside
the scope of this article paper and this section focuses on
how

Windmill made these measurements possible and only
summarizes the findings. The passive measurement of any
serial connection requires hardware intervention. The
UARC server was originally connected to the Internet
through a 100 Mbps switched Ethernet port on a Cisco
5500 router. For these experiments, we split the switched
Ethernet by inserting an Intel Express 10/100 Stackable
Hub between the router and the server. The perturbation of
the system was the addition of an extremely small amount
of latency. Windmill ran on a 300 MHz Pentium-II based
PC with 128 MB RAM.

38

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

The use of Windmill for on-line data reduction is illustrated
by the collection of user-level statistics for the UARC
behavioral scientists. These statistics correspond to actions
initiated by the users, including addition and removal of
subscriptions to data suppliers, as well as requests for
archived data.

In order to measure these application-level statistics, the
UARC transport protocol was reconstructed. Like BGP, its
frames are built on top of TCP and it uses a fixed header
size with variable size data payloads. Only a small fraction
of the application-level frames exchanged between the
client and server describe user actions; the majority of the
traffic is scientific data. Three days of continuous campaign
throughput was reduced by over five orders of magnitude
to approximately 200 KB of statistics.

The following is a subset of the questions that these
measurements answered:

Determination of the amount and level of synchronous
collaboration. What are the duration and times when the

analysis? This corresponds to determining when the
scientists were in the same virtual room at the same time.

Investigation into amount of cross specialization activity.
Do the scientists focus only on the instrument and supply
types that define their specialty, or do they exploit the
wealth of data made available by the system?

Temporal access patterns of the scientists. An analysis
was done to determine whether the scientists have changed
their access to their data. In the past, when they were
collocated, they would all sit in a quonset hut and engage in
science. Does this continue with a dispersed community?

Access patterns to archived data. How the ability to

impact their real-time campaign? The experiment measured
the access patterns to the archived data as well as the real-
time supplies.

underlying data streams is extremely powerful when
coupled with active measurements. Windmill allows
experimenters to define trigger events that can be used to
initiate active measurements in an external tool. For

threshold, an experiment could generate a trigger event that
instructs an external tool to obtain a path snapshot through
a mechanism such as traceroute.
If using passive measurement techniques for off-line
analysis, it is not possible at analysis time to gather
additional data about the state of the network due to the
transient characteristics of Internet paths [6].

Pairing passive with active measurements, a broader range
of statistics can be obtained. To illustrate this feature, in
conjunction with the UARC data reduction experiment,
Windmill ran an experiment that classified the different
types of client server connections. Specifically, when the
experiment recognized a connection from a previously
unconnected host, it sent a message to an active
measurement probe running on the same machine that
performed a path and ICMP RTT measurements on the
client.

5. CONCLUSION

The experiment in this article has proved that the passive
measurement techniques will become increasingly
important as the commercial shift in the Internet continues.
The ability to measure shrink-wrapped protocol
implementations is critical due to the overwhelming
deployment of commercially based protocol

-host and
infrastructure nodes. Together, the inability to take the
system off-line or modify it for study implies the need for
increased passive measurement of Internet performance.
Windmill was developed for precisely this purpose.

6. REFERENCES

[1] C. Labovitz, G. R. Malan, and F. Jahanian. Internet Routing
Instability. In Proceedings of , Cannes,
France, September 1997.
[2] K. Lougheed and Y. Reckhter. A Border Gateway Protocol
(BGP). RFC 1163, June 1990.
[3] G. Robert Malan, F. Jahanian, and S. Subramanian.
Salamander: A Push-based Distribution Substrate for Internet
Applications. In Proceedings of the USENIX Symposium on
Internet Technologies and Systems, Monterey, California,
December 1997.
[4] V. Paxson. End-to-End Routing Behavior in the Internet. In

, August 1996.
[5] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. The
SimOS Approach. IEEE Parallel and Distributed Technology,
Fall 1995.
[6] G. R. Wright and W. R. Stevens. TCP/IP Illustrated, Volume
2: The Implementation. Addison-Wesley, 1995.
[7] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R.
Henzinger, A. Leung, R. L. Sites, M. T. Vandevoorde, C. A.
Waldspurger, and W. E. Weihl. Continuous Profiling: Where
Have All the Cycles Gone? In Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles, pages 1-14, Saint-
Malo, France, October 1997.
[8] J. Apisdorf, K. Claffy, K. Thompson, and R. Wilder.
OC3MON: Flexible, Affordable, High Performance Statistics
Collection. In Proceedings of INET 97, Kuala Lumpur, Malaysia,
June 1997.
[9] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and P.
Sarkar. PathFinder: A Pattern- Based Packet Classifier. In
Proceedings of First USENIX Symposium on Operating Systems
Design and Implementation (OSDI), November 1994.

39

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

[10] R. Caceres, P. B. Danzig, S. Jamin, and D. J. Mitzel.
Characteristics of Wide-Area TCP/IP Conversations. In
Proceedings of ACM SIGCOMM 91, September 1991.
[11] K. C. Claffy, H. W. Braun, and G. C. Polyzos. A
parameterizable methodology for Internet traffic flow profiling.
IEEE JSAC, 1995.
[12] C. R. Clauer, J. D. Kelly, T. J. Rosenberg, C. E. Rasmussen,
E. Stauning, E. Friis-Christensen, R. J. Niciejewski, T. L. Killeen,
S. B. Mende, Y. Zambre, T. E. Weymouth, A. Prakash, G. M.
Olson, S. E. McDaniel, T. A. Finholt, and D. E. Atkins. A New

Project to Support Scientific Collaboration Electronically. EOS
Transactions on American Geophysical Union, 75, June 1994.
[13] D. E. Comer and J. C. Lin. Probing TCP Implementations. In
Proceedings of the Summer USENIX Conference, June 1994.
[14] S. Dawson, F. Jahanian, and T. Mitton. Experiments on Six
Commercial TCP Implementations Using a Software Fault
Injection Tool. Journal of Software Practice and Experience,
27(12):1385-1410, December 1997.
[15] D. Engler and M. F. Kaashoek. DPF: Fast, Flexible Message
Demultiplexing using Dynamic Code Generation. In Proceedings
of ACM SIGCOMM 96, August 1996.

40

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Detection and visualization of visible surfaces

Student
Nova Cerkev 108
3203 Nova Cerkev

+38631212246

danijel.zlaus@uni-mb.si

ABSTRACT
This paper presents a new visible surface detection algorithm.
The algorithm identifies which surfaces are visible from a set
viewpoint with the utilization of the graphics processing unit
(GPU). How we utilize the GPU is described in detail. This is an
experimental approach for precise detection of visible surfaces in
3D scenes.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation - bitmap
and framebuffer operations, display algorithm.

General terms
Algorithms, Performance

Keywords
visible, hidden, surface, determination

Supervisor:

1. INTRODUCTION
The application of visible surface detection algorithms is
twofold. Firstly, the algorithm can be used to detect which
objects are visible and also to approximate the percentage of the
visible surface area for each surface. Secondly, the algorithm can
be used for removing unnecessary surfaces that are occluded and
by doing so we can speed up our applications, because the
occluded surfaces could have otherwise gone through heavy
processing with advanced effects. Here we must emphasize that
this is not a culling method since those tend to operate on groups
of surfaces and try to determine visibility of objects. Another
property of the culling methods is that they tend to run almost
exclusively on the central processing unit (CPU).
The method we propose can determine which surfaces of the
object are visible and is more suited for processing on the GPU.
We have implemented the method using the OpenGL API.

2. SURFACES
In our method the term surface represents an individual polygon.
The simplest polygon is a triangle and since that is sufficient to
construct any kind of complex geometry, we saw no need for
usage of more complex polygons such as tetragons, pentagons
etc. Thus we only use triangle surfaces in our geometric data, but
the method also works for arbitrary polygons. It is though
recommended to keep the geometry simple by using only
triangles, since this reduces a shortcoming of our method, which
is described in 4.3.

3. DESCRIPTION OF THE ALGORITHM
The basic idea behind the algorithm is very simple and consists
of three steps:

- Render each triangle with a unique color,

- download the rendered 2D image from the GPU,

- iterate though the 2D image and for every pixel map its color
back to the triangle it represents and mark the triangle as visible.

3.1 Using the graphics processing unit (GPU)
Our method works by exploiting the color and stencil buffers of
the GPU. These give us 39bits of data we can use per pixel. 32
bits come from the color buffer and 8 bits from the stencil buffer.
The color buffer is comprised of four 8 bit channels, usually
referred to as RGBA channels (red, green, blue and alpha). We
reserved 1 bit for future use. The algorithm also exploits the Z-
buffer, which automatically performs depth sorting of the
geometry. All of these buffers are available on any modern GPU
[1].

When the scene is to be rendered we have to attach the object
and triangle information to every pixel. This can be
accomplished in many ways. We chose a simple system where
we first store the surface offset (0 ... N-1 where N is the number
of surfaces for a given object) and then the object offset (0 ... M-
1 where M is the number of objects in our scene) into the color
and stencil buffer. This is accomplished by converting the offsets
into a RGBA color and storing any remaining data into the
accompanying stencil value. Once we have the color and stencil
value, we can render that surface and the GPU will, using the Z-
buffer, determine if any part of the surface is visible.

After the rendering of the geometry is finished we need to
download the data stored in the color and stencil buffer from the
GPU memory to the system memory [2] where we process the

41

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

result as a 2D image. The color and stencil buffers together carry
information from which we can calculate the index of the object

Thus we can easily determine which surfaces are visible.

It is worth noting that these are the minimal steps required for
implementing the algorithm and that presented method will also
work with scenes that include dynamic objects. In the
continuation we describe the techniques required to process
scenes with richer geometry.

For each model in level
 For each polygon in model
 Generate unique color information
 Add the color to an auxiliary color buffer
 End for
End for
Upload the data to the GPU

Pseudo code for initialization

Cull the scene using ordinary techniques
Draw onto a hidden screen using auxiliary color buffers
Retrieve the drawn scene
For each pixel in scene
 Decode pixel
 Mark the appropriate polygon as visible
End for

Pseudo code for rendering

3.2 Utilizing the limited space
Since we have a fixed amount of available bits per pixel and two
things we would like to store in the buffer, we have two ways as
to how to divide it. Either we create a fixed division or we
attempt to change the division when needed.

If we know the maximum number of objects and triangles per
object that will appear in every future scene, beforehand, we can
use fixed division. Since that scenario is highly unlikely, it is
worth trying to find a better approach.

To use the limited space of the GPU buffers (39 bits) more
efficiently we can check how many objects will be sent to the
GPU just before rendering and how many surfaces each of these
objects contains. Using this information we can dynamically set
the division before each rendering. This is done using the
following algorithm:

1. will be
rendered.

2.
surfaces -

3. Calculate the least amount of bits needed to store

4. Calculate the optimal division point using the numbers
n and m.

Using this approach a scene that renders 70000 objects leaves 22
bits available for the surface offsets. The number 70000 requires
at least 17 bits to be stored. With the available space left we can

have up to 222 (slightly over 4 million) surfaces per object.

3.3 Optimization
It is recommended that we do some basic geometry culling, such
as frustum culling [3] and perhaps more advanced techniques
such as occlusion culling [4], before executing the surface
visibility detection algorithm. This is advised, because it usually
reduces the number of objects that need to be rendered and
therefore reduces the number of bits required for storing the
object index. It is possible that some scenes could not be
processed correctly, if the number of objects and surfaces in the
geometry is too big. By culling the scene before the rendering,
we can potentially reduce the number of occurrences of this
issue.

In our frustum culling method we use an axis aligned bounding
box (AABB) coupled with a bounding sphere for each object to
perform fast intersection testing. In addition, every object also
has its geometry further divided with an octree, which can be
used to for more precise culling [5].

We performed a test of the efficiency of the algorithm with and
without culling. The comparison is shown in Figure 1. In the
scene that was used for testing, culling had a mostly negative
impact on performance because geometry of the scene was tightly
localized. The only noticeable speedup occurred when just a small
part of geometry was visible (viewpoint 7) and when no geometry
was visible (viewpoint 8). Culling would have a more positive
effect on the performance if the objects were more uniformly
distributed.

Figure 1 - Comparison of the performance of the algorithm
with and without usage of culling.

4. DRAWBACKS
The proposed method also has some drawbacks, which need to be
considered when the algorithm is used. In this chapter we give a
detailed description of these drawbacks.

42

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

4.1 Performance scaling
Retrieving (downloading) data from the GPU memory into system
memory is a slow operation and can therefore become a
bottleneck of the method [2]. The higher rendering resolution we
use the longer we need to wait for the transfer of data to finish,
before we can start processing the data. A resolution increase of

X times will result in an 2X increase of the number of pixels
in the rendered image. Figure 2 shows how the resolution of the
image affects the actual performance of the algorithm.

Figure 2 - Performance scaling with resolution increase

In the figure the resolution increases are 2 times the previous
resolution so that the pixel count increases by a factor of 2

(2;2 2XX). The graph matches our prediction and
we can see that the run time starts to sharply rise at a certain
resolution, as we would expect from an exponential function. The
exact point when this sharp jump happens depends on the
hardware configuration of the host PC and is especially influenced
by the speed of the graphics card and the bus bandwidth.

4.2 Size of the viewport
The algorithm we propose requires two rendering pass and two
rendering surfaces (images). One render surface is used by the
visibility algorithm and the second render surface is used to
render the view of the scene from the selected viewpoint. In
continuation we will call the first surface the visibility surface
and the second one the view surface.
The sizes of the visibility surface and the view surface need not
be equal, but this can affect the preciseness of the algorithm.
Usage of small visibility surface (smaller than the view surface)
should result in a lot of surfaces getting marked as false
negatives, since some surfaces will not be rendered to the
visibility surface. An example of this is shown in Figure 3. The
red surfaces have all gone undetected although they are visible,
whilst the light green surfaces have been marked. Figure 4 shows

the results of the visibility detection algorithm when the visibility
surface is the same size as our view surface. Figure 5 shows the
results of the algorithm when the visibility surface is bigger than
the view surface. There are some undetected surfaces at the
selected viewing resolution, but there are many more marked
surfaces that we do not actually see at the selected viewing
resolution. Figures 3, 4 and 5 show the same scene rendered from
the same viewpoint with the same size of the view surface, only
the size of the visibility surface was different.
Generally, there is no reason to use a visibility surface that is
smaller than the view surface if the goal is to discover surface
visibility. We should use the visibility surface that is at least the
same size as our view surface. Usage of larger visibility surface is
easily possible and also suggested since by using it we capture all
the small surfaces in the distance that we would otherwise miss.

Figure 3 - Usage of the visibility detection algorithm using
view window coupled with a smaller visibility results in a lot of
false negatives (red colored surfaces)

Figure 4 - Result of the visibility detection algorithm using
view window coupled with a visibility surface that is the same
size. There are no false negatives or false positives.

43

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Figure 5 - Result of the visibility detection algorithm using
view window coupled with a larger visibility surface. There
are a few false negatives and a few false positives, which we do
not see here, since the size of the view window is constant.

4.3 Triangle size
The method is also sensitive to the size of surfaces, since just one
visible pixel of a large surface is enough to mark the whole
surface as visible. This is especially emphasized on surfaces at
the edge of the view area, where a large number of surfaces get
marked as visible even though a only a tiny part of the surface is
visible. If this is undesired there are methods that can be used to
reduce this noise:
1. We can attempt suppressing the noise by counting how many
pixels belong to each visible surface and then mark the surface as
invisible if the number of pixels is under some preset threshold.
The threshold would have to be determined depending on the
type of geometry and the distance from the geometry. This
method needs more post processing of the data, but does not
require any changes of geometry of the scene.
2. We can preprocess each surface and break up large surfaces
into smaller ones. This way we suppress the amount of noise
generated on the expense of more complex scene geometry, but
the post processing time is the same as for basic algorithm.

Which method is more appropriate depends on the host hardware
and the scene geometry. However, even if we use these methods
some noise in the output is unavoidable as it is very unlikely that
every triangle detected by the algorithm will be fully contained
inside the view frustum. Therefore we can only try to prevent the
extreme case where large surfaces get marked as visible although
only one pixel of the surface is visible.

5. OTHER METHODS
Today, many algorithms for detection of visible (or hidden)
surfaces exist. One of the more popular methods is based on ray
casting [6]. The method works by casting rays from the
viewpoint into the scene geometry and finds the intersected
surface that is closest to the rays point of origin and if such a
surface exists, we mark it as visible. It is also possible that a ray

does not intersect any geometry. As ray casting usually works in
image space so one or more rays is cast into the scene for each
pixel of the output image. Because of this the method is
subjected to the same problems of resolution scaling as our
method, since a resolution increase of X times will require at

least 2X times more rays to be cast. Each ray also has to do a
lot of costly intersection testing operations before it finds the
closest surface.
The method has several benefits compared to our method:

- does not require a GPU,
- very precise, since it calculates the points of ray-

surface intersection,
- not limited by how many objects or triangles it can

check,
but it also has several drawbacks:

- computationally heavy,
- complex implementation is needed for a fast solution,
- scales poorly with bigger scenes and resolutions.

5.1 CONCLUSION
We have designed and implemented a fairly robust and fast
solution for finding all visible surfaces from a given point of view.
Early results are promising and we can achieve real-time
visualization of quite complex scenes, although the speed of the
execution is very dependent on the host hardware and target
resolution of the view window. Our future work will be oriented
toward speeding up the method, so that we could perform real
time rendering even for higher resolutions.

6. REFERENCES
[1] Buffers on GPU, Website

http://jerome.jouvie.free.fr/OpenGl/Lessons/Lesson5.p
hp (10.2.2010)

[2] Data readback from GPU, Whitepaper
http://developer.nvidia.com/object/fast_texture_transfe
rs.html (15.2.2010)

[3] Frustum culling, Website
http://www.flipcode.com/archives/Frustum_Culling.sht
ml (3.6.2010)

[4] Occlusion culling, Website
http://http.developer.nvidia.com/GPUGems/gpugems_c
h29.html (5.6.2010)

[5] Octree data structure, Website
http://en.wikipedia.org/wiki/Octree (13.5.2010)

[6] M. Berg. Ray shooting, depth orders and hidden
surface
Removal, Springer-Verlag, Berlin, 1993

44

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Efficient approach for visualization of large cosmological
particle datasets

Niko Lukač
University of Maribor

Faculty of Electrical Engineering and Computer Science
Smetanova ulica 17, 2000 Maribor, Slovenia

+386 02 220 7435
niko.lukac@uni-mb.si

ABSTRACT
This paper presents an efficient approach for visualizing large
quantities of cosmological particle data. The data is represented
as 3D points and originates from various sources. Due to the size
of the cosmos, huge amounts of observed and simulated data can
cause considerable problems for real-time visualization.
Our approach consists of preprocessing and visualization phases.
In the preprocessing phase we organize the data for more
efficient visualization. In the visualization phase we perform
culling to reduce the number of particles that will be rendered.
Compared to brute-force visualization approach, we can render
more frames per second (FPS) and in most cases assure real-
time visualization, without losing much visual quality.

Categories and Subject Descriptors
I.3.5 [Computing Methodologies]: Computational Geometry
and Object Modeling – Boundary representations, Geometric
algorithm, Object hierarchies.

General Terms
Algorithms, Design, Performance, Experimentation.

Keywords
Cosmological visualization, cosmological datasets, geometric
algorithms, data preprocessing, octree volume, frustum culling,
level of detail.

Supervisor
Borut Žalik
University of Maribor
Faculty of Electrical Engineering and Computer Science
Laboratory for Geometric Modelling and Multimedia
Algorithms
Smetanova ulica 17, 2000 Maribor, Slovenia

1. INTRODUCTION
In cosmology it is common for astrophysicists to analyze
cosmological data by observation. Computer based visualization
enables better understanding of cosmos and extraction of useful
information. Scientists often want to systematically analyze
large amounts of data, what is impossible to do manually.
Because the quantity and resolution of data increases each year,
it is almost impossible to visualize large sets of data in real-time
using brute-force rendering method, despite the advances in
computer technology. Consequently new approaches that
support real-time visualization are being developed.
Today there exist advanced interactive visualization toolkits [3,
5] and commonly used approach to achieve real-time
visualization of large datasets is parallel based rendering by
utilizing clusters of computers or supercomputers to balance the
hardware load [1, 11]. Other visualization solutions employ
various techniques using level of detail (LOD) methods [2],
hierarchical division [10] or exploit advantages of GPU
hardware [2, 10, 11].

2. COSMOLOGICAL DATASETS
Cosmological data available today originates from observations
and n-body simulations. N-body simulations produce large
amounts of artificial datasets using complex algorithms for
simulating gravity force influence between the particles. The
simulated data represents cosmic evolution and expansion, black
matter distribution, galaxy evolution and other cosmological
phenomena. Particles in n-body simulations often represent
different cosmological objects depending on simulation type,
ranging from dark matter fluid, gas clouds, galaxies to galaxy
clusters. Simulated datasets are larger than datasets of objects
from observable universe, due to the limitations of natural
observations (e. g. large distances, radiation noise and cosmic
expansion). Therefore computer based cosmological
visualizations are mostly focused on million to billion point
particle n-body simulated datasets.
The particle datasets are stored in different formats with
different properties [8]. Most common properties are particle
position (X, Y and Z coordinates), velocity (X, Y, Z) and mass.
Using this information it is possible to make point based particle
3D visualization.

45

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

3. VISUALIZATION APPROACH
Our solution consists of several efficient methods that enable
real time visualization of cosmological particle data by reducing
the hardware load. To achieve this, the data is preprocessed
before the visualization. In visualization phase, points are culled
based on their visibility regarding the position and orientation of
the camera. Custom frustum and LOD culling methods are used
in order to speed up the rendering process [4].

3.1 Data Preprocessing
In preprocessing phase the data are firstly inserted into an octree
structure, based on spatial positions, in order to achieve later
visualization optimization. Octree structure recursively divides
the space into eight subspaces. The leaf nodes of the tree
structure contain the particles that are spatially close to position
of the center of the node. Nodes of the octree spatially represent
axis aligned bounding boxes (AABB). As Figure 1 shows, the
denser the data is at certain subspace, the deeper is the
hierarchical space subdivision. In order not to descend too deep
into octree, where a single point can eventually become a leaf
node, thresholds have been defined. The thresholds control the
maximum amount of points per leaf node and maximum tree
depth.

Figure 1. Visualization of sample cosmological particle data

aligned in AABB octree nodes.
The next step is to order the data ordering in each node. Here we
use a simple scrambling algorithm using random substitutions to
achieve good random spatial distribution. This is important for
optimization purposes due to the LOD usage later in the
visualization phase (see section 3.2.2). Figure 2 presents an
example of data ordering before and after scrambling. The
scrambling is done until we have good distributed order of
points in space, where isolated points are equally important as
large clusters of points.
Because the data is often larger than computer system and GPU
memory can hold, the data of each node is stored on the hard
disk in a separate file. This enables efficient streaming of the
data during visualization as the data can be read on the fly into
the GPU memory when required.

Figure 2. Example of saved data order after scrambling.

3.2 Visualization
In the visualization phase we cull particle points before
rendering. Each time the observer’s camera moves or orientates
differently, we have to execute the culling methods. For
optimization purposes we have preprocessed the data, therefore
when culling algorithms are used, we only use spatial center
points of the octree nodes to represent all other points in its
subspace. Checking visibility of each point individually would
be too slow and time consuming. For additional performance
gain the culling is also performed recursively through the entire
octree structure. This is based on a premise that if a parent node
is outside viewing frustum all its children nodes are outside the
frustum too. This allows skipping many nodes when culling.
The culling phase is divided into two subphases: the frustum
culling and LOD based culling.

3.2.1 Frustum Culling
This culling method is used to determine which points are within
observer’s visible space (viewing frustum). Geometric structure
of the viewing frustum is shown in Figure 3. In order to perform
frustum culling the planes of the viewing frustum are extracted
[6] and represented in normalized plane equation form �� �

�� � �� � 	.

Figure 3. Geometric structure of the viewing frustum.

In order to determine the visibility of a node, custom frustum
culling algorithm calculates at first a bounding sphere (BS) of
the frustum and BS of the node and performs the intersection
test between them. The BS-BS intersection test is very efficient
and can quickly dismiss nodes that are outside viewing frustum.
To execute the test we calculate the squared Euclidian distance
from center point of a given node (point A) to center point of the

46

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

BS of the frustum (point B). If the distance is greater than the
sum of radiuses of both spheres, then it is known that the given
node lies outside frustum’s BS and consequently outside the
viewing frustum.
If the first culling algorithm determines that a given node
intersects or lies inside the frustum’s BS, then we perform a
second culling algorithm using node’s BS and planes of the
viewing frustum. This test is executed six times; once for each
plane.
If the center point of the node lies inside the viewing frustum we
mark the node as visible and stop the frustum culling algorithm.
Otherwise we have to perform another test, because part of the
node can still be inside the viewing frustum even though its
center point is outside.
The last culling test is performed between the node’s AABB and
the planes of the frustum. We perform the same calculation as in
the second step, except that we now use all eight corners points
of the node’s AABB instead of the center point. This means that
the calculation must be performed 48 times in the worst case.
However, if we determine that one of the corner points is
visible, we mark the node as visible and end the test.
As can be deduced from the description of the frustum culling
algorithm, the visibility test is performed only for the nodes and
not for single particles. We find it more optimal to end the
culling algorithm once we determine that the node is partially
visible, because the tests have proven that it is commonly faster
to visualize all particles of that node, rather than check which
ones are actually visible.

3.2.2 Level of Detail
After the frustum culling is done, we perform further culling
using LOD method. With LOD we define how many points will
be visible for a given node inside the viewing frustum. Thus we
reduce the number of visible points and achieve better
performance. As mentioned before, in the preprocessing section,
the data is randomly scrambled, which allows employing a LOD
culling method that loads the node data in the linear order. The
goal of LOD is to visualize the dataset from a given view point
by rendering fewer points than originally located in the viewing
frustum space, without losing much visual quality by preserving
overall structure of particle clusters (see Figure 4).
The used method measures squared Euclidian distance between
the center points of the nodes and the position of the camera.
With this information we define how many points have to be
rendered for a given node with the following equations:

����% � 100 �
������������ ! " 100

��#����������� !

 (3.1)

�����$%�� �
����& " '
����% 100⁄) (3.2)

The consequence of our LOD culling method is that further from
a given node observer is, the fewer points of the node are
visualized. As a result, small details can disappear for the nodes
that are far away from the camera. Usually, this is not a problem
as these details would not be noticeable due to the density and
number of the particles in the data. The reference distance in
equation 3.1 is experimentally set to 3 times the radius of the
root node of the octree, which represents the AABB of the
whole dataset. This means that as a result of the equation 3.2 all

points of a node far away from the camera would be culled,
which could result in a significant loss of the visual quality. To
prevent that, we can set a minimum threshold for the amount of
particles in a node that have to be rendered.

Figure 4. Example of using LOD culling when zooming into

a specific region of sample cosmological particle data.

4. RESULTS
We have implemented our approach in C/C++ programming
language using OpenGL graphical library for rendering. For
GPU memory storage we used OpenGL Vertex Buffer Object
(VBO) extension [9]. Each leaf node in the octree structure
contains one or more VBO objects that hold the data of
visualized points and possibly, if there is enough memory
available, even non visualized points, in order to reduce possible
data transfer times to GPU.
We compared our visualization method with classic brute-force
(BF) approach. The comparison tests were executed on a
common desktop PC with 256MB video memory and 4GB
system memory. We performed a sample visual comparison
between the two approaches as shown in Figure 5 below.

a)

b)

Figure 5. Visual comparison of a) 20% and b) 100%
particle visualization.

For further comparison we tested the number of rendered frames
per second (FPS) for both approaches. The comparison between
the two approaches is shown in Table 1 and Figure 6. For each
test different datasets of various simulations [9] with different
number of particles have been tried. The FPS test was done

47

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

using a predetermined camera fly-through the visualized data.
Camera position was initially aligned with the X coordinate axis,
and it was away for two times data’s highest octree root node
radius. The camera was rotated for every 10th degree around the
root node center point and after a full rotation the camera moved
for 10% of initial distance toward the center point. This fly-
through has been repeated until camera position was equal to the
center point. By using this approach, different points of views
have been tested. All the tests have been performed 10 times.
Only small variations in FPS between the different runs have
been noticed.

Table 1. Tests comparison results.

The tests results clearly indicate that our approach is
considerably faster in all cases. The BF approach can keep up
with real-time visualization as long as there is enough GPU
memory. Our approach can still preserve real-time visualization
by culling large amounts of points.

Figure 6. Graph of tests results from table 1.

5. CONCLUSION
In the paper we have presented an approach for efficient
rendering of large cosmological particle datasets, which
efficiently reduces hardware load. Although our solution can
render significantly larger datasets than the brute force method,
the number of particles that can be rendered in real-time on a
single computer is always limited to some maximum by a
hardware bottleneck. This problem is today usually solved by
parallelization. We believe that our solution is also suitable for
parallelization, which could be done by distributing octree nodes
to different computers. Using this approach we could efficiently
visualize even datasets that consist of billions of particles. Data

ordering could be performed using a clustering algorithm, in
order to increase the visualization quality.

6. REFERENCES
[1] Balazs Domonkos, Kristof Ralovich, Parallel Visualization

of the Sloan Digital Sky Survey DR6, The 16th
International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision, University
of West Bohemia, Campus Bory, Plzen - Bory, Czech
Republic, February 4-7, 2008.

[2] Carl Hultquist, Sameshan Perumal, Patrick Marais, Tony
Fairall, Large-Scale Structure in the Universe, Technical
Report CS03-16-00, Department of Computer Science,
University of Cape Town, October 10, 2003.

[3] Daniela Ferro, Ugo Becciani, Vincenzo Antonuccio
Delogu, Angela Germana, Astrophysical Data Analysis and
Visualization Toolkit, F. Murtagh, G. Longo, J.-L. Starck,
Di Ges´u, Eds. Astronomical Data Analysis III, Saint Agata
on the Two Gulfs, 29. April - 1. May 2004.

[4] Fernando Randima ed., GPU Gems: Programming
Techniques, Tips and Tricks for Real-Time Graphics,
Addison Wesley Professional, (2004).

[5] Giancarlo Amati, Maura Melotti, Daniela Ferro, Gianluca
Di Rico, Lugii Paioro, AstroMD and Cosmo.Lab
visualizing astrophysicial data, Proceedings of Joint
Eurographics - IEEE TCVG Symposium on Visualization,
pp. 1-6, 2002.

[6] Gribb Gil, Klaus Hartmann, Fast Extraction of Viewing
Frustum Planes from the World-View-Projection Matrix,
June 2001, Online document:
www2.ravensoft.com/users/ggribb/plane%20extraction.pdf
(27.05.2010).

[7] Jasjeet Singh Bagla, Cosmological N-body simulation:
Techniques, scope and status, Current science, Vol. 88, No.
7, pp. 1088-1100, 2005.

[8] MPA Numerical Cosmology Data Archive, Online:
http://www.mpa-arching.mpg.de/ (20.06.2010).

[9] OpenGL VBO extension, Online:
http://www.opengl.org/wiki/Vertex_Buffer_Object
(16.03.2010)

[10] Tamas Szalay, Volker Springel, Gerald Lemson, GPU-
Based Interactive Visualization of Billion Point
Cosmological Simulations, CoRR, November, 2008.

[11] Zhefan Jin, Mel Krokos, Marzia Rivi, Claudio Gheller,
Klaus Dolag, Martin Reinecke, High-performance
astrophysical visualization using Splotch, Procedia
Computer Science, ICS 2010, Vol. 1, No. 1, pp. 1769-1778,
May 2010.

Particles # BF approach
[FPS]

Our
approach
[FPS]

Difference
[%]

1.000.000 80 142 77.5%

5.000.000 75 139 85.3%

10.000.000 40 81 102%

15.000.000 33 53 60%
20.000.000 20 35 75%

35.000.000 5 26 420%

50.000.000 2 23 1050%

100.000.000 1 20 1900%

48

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Computing the Longest Common Subsequence of Two
Strings When One of Them is Run-Length Encoded

Shegufta Bakht Ahsan
A�EDA Group, Department of

CSE, BUET, Dhaka-1000,
Bangladesh

plaban777@yahoo.com

Tanaeem M. Moosa
A�EDA Group, Department of

CSE, BUET, Dhaka-1000,
Bangladesh

tanaeem@cse.buet.ac.bd

M. Sohel Rahman
A�EDA Group, Department of

CSE, BUET, Dhaka-1000,
Bangladesh

msrahman@cse.buet.ac.bd
Shampa Shahriyar

A�EDA Group, Department of
CSE, BUET, Dhaka-1000,

Bangladesh
shampa077@gmail.com

ABSTRACT
Given two strings, the longest common subsequence prob-
lem computes a common subsequence that has the maxi-
mum length. In this paper, we present new and efficient
algorithms for solving the LCS problem for two strings one
of which is run-length encoded (RLE).

1. INTRODUCTION
Suppose we are given two strings X[1 . . . N] = X[1]X[2] . . .
X[N] and Y [1 . . . P] = Y [1]Y [2] . . . Y [P]. Without the loss
of generality, we can assume that N ≤ P . A subsequence
S[1 . . . R] = S[1]S[2] . . . S[R], 0 < R ≤ N of X is obtained
by deleting N−R symbols from X. A common subsequence
of two strings X and Y is a subsequence common to both X
and Y . The longest common subsequence problem for two
strings, is to find a common subsequence in both strings,
having maximum possible length. An interesting parameter
for LCS problem is R, which is the total number of ordered
pairs of positions at which the two strings match. More
formally, we say a pair (i, j), 1 ≤ i ≤ N, 1 ≤ j ≤ P , defines
a match, ifX[i] = Y [j]. The set of all matches,M, is defined
as follows:

M = {(i, j) | X[i] = Y [j], 1 ≤ i ≤ N, 1 ≤ j ≤ P}.
Observe that |M| = R. We use the notation Mi to de-
note the set of matches in Row i. Also, for the sake of
better exposition we impose a numbering on the matches
of a particular row from left to right as follows. If we have
Mi = {(i, j1), (i, j2), . . . , (i, j�)}, such that 1 ≤ j1 < j2 <
. . . < j�, then, we say that number((i, jq)) = q and may
refer to the match (i, jq) as the qth match in Row i. Note
that number((i, jq)) may or may not be equal to jq.

In this paper, we are interested to compute a longest com-
mon subsequence (LCS) of two strings when one of them
is run length encoded (RLE) [12]. The motivation for us-
ing compressed strings as input comes from the huge size
of biological sequences. In a string, the maximal repeated
string of characters is called a run and the number of repeti-
tions is called the run-length. Thus, a string can be encoded
more compactly by replacing a run by a single instance of
the repeated character along with its run-length. Compress-
ing a string in this way is called run-length encoding and a
run-length encoding string is abbreviated as an RLE string.

In what follows, we use the following convention: if X is
a (uncompressed) string, then the run length encoding of

X will be denoted by X̃. For example, the RLE string of

X = bdcccaaaaaa is X̃ = b1d1c3a6. Note that for X̃, we

define X̃[1] = b1, X̃[4] = a6 and so on. The notation |X|
is used to denote its usual meaning, i.e., the length of X;

the length of the corresponding RLE string X̃ is denoted

by |X̃|. We will use small letters to denote the length of an
RLE string; whereas capital letters will be used to denote the
length of an uncompressed string. For example, if |X| = N ,

then we shall use n to denote the length of X̃. Also, note
that, the notion of a match and hence the definition of M
can be extended in a natural way when one or both the
strings involved are RLE. For example, the notion of a match
(i, j) ∈ M, is extended when one input is an RLE string as

follows: if Ỹ [i] = aq and X[j] = a then we say (i, j) ∈ M
and run((i, j)) = q.

We will use LCS RLE(X, Ỹ) to denote an LCS of X and

Ỹ . There has been significant research on solving the LCS
problem involving RLE strings in the literature. Mitchell
proposed an algorithm [7] capable of computing an LCS
when both the input are RLE strings. Given two RLE

strings X̃[1 . . . n] and Ỹ [1 . . . p], Mitchell’s algorithm runs
in O((R+ p+ n) log(R+ p+ n)) time. Apostolico et al. [2]
gave another algorithm for solving the same problem in
O(pn log(pn)) time whereas the algorithm of Freschi and
Bogliolo [4] runs in O(pN + Pn− pn) time. Ann et al. also
proposed an algorithm to compute an LCS of two run length

49

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

encoded strings [1] in O(pn +min{p1, p2}) where p1, p2 de-
note the number of elements in the bottom and right bound-
aries of the matched blocks respectively. The version of the
problem where only one string is run length encoded was
handled recently by Liua et al. in [6]. Here, the authors
proposed an O(nP) time algorithm to solve the problem.

In this paper, we present two novel algorithms to compute

LCS RLE(X, Ỹ). In particular, we first present a novel
and interesting idea to solve the problem and present an al-
gorithm that runs in O(nP) time. This matches the best
algorithm in the literature [6] for the same problem. Sub-
sequently, based on the ideas of our above algorithm, we
present another algorithm that runs in O(R log log p + N)
time. Clearly, for R < pN/ log log p, our second algorithm
outperforms the best algorithms in the literature. Notably,
in our setting, Mitchell’s algorithm would run in O((R+P+
n) log(R + P + n)) time, which clearly is worse than ours.
Mitchell’s algorithm could also be used in our setting with
an extra preprocessing step to compress the uncompressed
string. In this case, the cost of compression must be taken
into account.

2. A NEW ALGORITHM
In this section, we present Algorithm LCS RLE-I which
works in O(pN) time. Since our algorithm depends on some
ideas of the algorithm LCS-I of [10, 11], we give a very brief
overview of LCS-I in the following subsection.

2.1 Review of LCS-I
Note that LCS-I solves the classic LCS problem for two given
strings X and Y . For the ease of exposition, and to remain
in line with the description of [10, 11], while reviewing LCS-I
(in this section) we will assume that |X| = |Y | = N . From
the definition of LCS it is clear that, if (i, j) ∈ M, then we
can calculate T [i, j], 1 ≤ i, j ≤ N by employing the following
equation [8]:

T [i, j] =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Undefined if (i, j) /∈M,

1
if (i = 1 or j = 1)
and (i, j) ∈M,

max{(T [�i, �j])}+ 1
1 ≤ �i < i
1 ≤ �j < j
(�i, �j) ∈M

if (i, j �= 1)
and (i, j) ∈M

(1)

Here we have used the tabular notion T [i, j] to denote
r(Y [1..i], X[1..j]). In what follows, we assume that we are
given the set of M in the prescribed order assuming a row
by row operation. LCS-I depends on the following facts,
problem and results.

Fact 1. ([9, 8]) Suppose (i, j) ∈M. Then for all (i′, j) ∈
M, i′ > i, (resp. (i, j′) ∈ M, j′ > j), we must have
T [i′, j] ≥ T [i, j] (resp. T [i, j′] ≥ T [i, j]). �

Fact 2. ([9, 8]) The calculation of the entry T [i, j], (i, j)
∈ M, 1 ≤ i, j ≤ n, is independent of any T [�, q], (�, q) ∈
M, � = i, 1 ≤ q ≤ N . �

Problem 1. Range Maxima Query Problem. We are
given an array A = a1a2 . . . an of numbers. We need to
preprocess A to answer the following form of queries:
Query: Given an interval I = [is..ie], 1 ≤ is ≤ ie ≤ n,
the goal is to find the index k (or the value A[k] itself) with
maximum value A[k] for k ∈ I. Ties can be broken arbitrar-
ily, e.g. by taking the one with larger (smaller) index. The
query is denoted by RMQA(is, ie)

Theorem 1. ([3, 5])Range Maxima Query Problem can
be solved in O(n) preprocessing time and O(1) time per query.
�

Now, assume that we are computing the match (i, j). LCS-I
maintains an array H of length N , where, for the current
value of i ∈ [1..N] we have, H[�] = max1≤k<i,(k,�)∈M(T [k, �]),
1 ≤ � ≤ N . The ‘max’ operation, here, returns 0, if there
does not exist any (k, �) ∈M within the range. Now, given
the updated array H, LCS-I computes T [i, j] by using the
constant time range maxima query as follows: maxIndex =
RMQH(1, j − 1), T [i, j] = H[maxIndex] + 1. Because of
Fact 1, LCS-I is able to maintain the array H on the fly
using another array S, of length N , as a temporary stor-
age. After calculating T [i, j], such that (i, j) ∈ Mi, LCS-I
stores S[j] = T [i, j]. It continues to update S (and not H)
as long as the computation continues in the same row. As
soon as the processing of a new row begins, it updates H
with new values from S. Due to Fact 1, LCS-I does not
need to reset S after H is updated (by it) for the next row.
Now, for the constant time range maxima query, an O(N)
time preprocessing is required as soon as H is updated. But
due to Fact 2, it is sufficient to perform this preprocessing
once per row. So, the computational effort added for this
preprocessing is O(N2) in total. Therefore, LCS-I runs in
O(N2) time.

2.2 LCS_RLE-I
In this section we present our first algorithm, namely
LCS RLE-I, to solve the LCS problem when one of the
strings is an RLE string. Recall that, the notion of a match
(i, j) ∈ M, is extended when one input is an RLE string as

follows: if Ỹ [i] = aq and X[j] = a then we say (i, j) ∈ M
and run((i, j)) = q. Following the idea of [10, 11], in the
LCS RLE-I algorithm, we maintain the arrays H and S and
use them exactly the same way as they are used in LCS-I.
We will be using another array K for the efficient imple-
mentation of our algorithm and its use will be clear as we
proceed.

Now consider that we have completed the computation for
the matches belonging to Row i − 1 (i.e., Mi−1) and we
start Row i. Given the updated array H, assume that we
are processing the match (i, j). Also assume that when the
the computation of the match (i, j) would be complete, i.e.
T [i, j] is completely computed, we would have the result

of LCS RLE(Ỹ ′aq, X ′), where Ỹ ′aq and X ′ are prefixes of

50

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Ỹ and X respectively. Then, clearly, the match is due to
the letter a. Now, if q = 1, then to compute T [i, j], we
simply need to perform: T [i, j] = H[RMQH(1, j − 1)] + 1.
We also need to update S array to store the new value of
T [i, j] as the current highest value of the j column, i.e. we
perform S[j] = T [i, j]. In what follows, we refer to the above
operations as the baseOperation.

If q > 1, then, we require two steps. Firstly, we perform the
baseOperation. Then, in the second step (referred to as the
weightOperation) we consider q previous matches in Row
i, including the current one. If fewer matches are available
we need to consider all of them. Now, note carefully that
T -values for these matches have already been computed and
reflected in the S array. We copy S to K and S array is
never changed by any weightOperation. For Row i, we call
K[k] to be a match position if (i, k) ∈ Mi and K[k] and
k are referred to as the corresponding K-value and K-index
(similar notations are also defined for the arrays H and S).
Now, we add a weight to each of the corresponding K-values:
the weight is 0 for the current match, 1 for the previous
match, 2 for the match before it and so on. Now observe that
T [i, j] will be the maximum of these values. This is because
the kth element of this “window” from right, corresponds to
matching k a’s from the run aq with rightmost k a’s from

X ′ and then matching the remaining substring with Ỹ ′.

We will use array K to do this computation efficiently. Now
recall that we are handling the match (i, j) ∈ Mi. Clearly,
we can implement the weightOperation by adding the ap-
propriate weights at the corresponding match positions of K
and then performing the query RMQK(u, j), such that K[u]
is a match position (due to (i, u)) and q = number((i, j))−
number((i, u)+1. In what follows we will refer to the above
range (i.e. the range [u . . . j]) as the weighted query window.
However, in this strategy, we may need to adjust the weights
every time we compute a new match since for each match
the weighted query window may change. Undoubtedly, this
would be costly. In what follows, we discuss how to do this
more efficiently.

Rather than adding the appropriate weight, for a particular
row, we will add relative weight to all the match positions
of K. This would ensure that the position of the maximum
value remains the same, although the value may not. To
get the correct value, we will finally deduct the appropriate
difference from the value. We do it as follows. After the
baseOperation, we copy the array S to array K. Then, to a
match (i, �), 1 ≤ � ≤ |Mi| we add |Mi|−number((i, j))+1
as the relative weight. In other words we give weight 1 to
the rightmost match, 2 to the next one and so on and finally,
Mi to the first match.

Now recall that we are considering the match (i, j) ∈ Mi,
i.e., we are computing T [i, j]. Assume that number((i, j)) =
|Mi| − k+1, i.e., this is the kth match position from right.
As before, we execute the query RMQK(q, j), such that K[u]
is a match position (due to (i, u)) and q = number((i, j))−
number((i, u)) + 1. However, this time we need to do some
adjustment as follows. It is easy to realize that each of the
values of the matched positions in K[u..j], is k higher than
the actual value. So, to correct the computation we perform
T [i, j] = K[RMQK(q, j)]− k.

The analysis of the algorithm is similar to that of LCS-I
algorithm of [10, 11]. As we need to do at most two RMQ
preprocessing per row, overall it will cost O(Np) time (using
O(N) time preprocessing algorithm). We need two RMQ
queries per match which amounts to O(R) (using constant
time RMQ query) time. Note that, in the worst case R =
O(Np). Finally, it is easy to see that, the set M in the
prescribed order can be computed easily in O(Np) time.
Therefore, LCS RLE-I solves our problem in O(Np) time.

3. LCS_RLE-II
In this section, we use the ideas of LCS RLE-I to present our
second algorithm, LCS RLE-II, which runs inO(R log log p+
N) time. To achieve this running time, we will use an ele-
gant data structure (referred to as the vEB tree henceforth)
invented by van Emde Boas [13] that allows us to maintain
a sorted list of integers in the range [1..n] in O(log log n)
time per insertion and deletion. In addition to that it can
return next(i) (successor element of i in the list) and prev(i)
(predecessor element of i in the list) in constant time.

We follow the same terminology and assume the same set-
tings of Section 2 to describe LCS RLE-II. So, assume that
we are considering the match (i, j) ∈ Mi and recall that
when the computation of the match (i, j) would be com-
plete, i.e. T [i, j] is completely computed, we would have

the result of LCS RLE(Ỹ ′ap, X ′). Note carefully that the
baseOperation is basically the operation required to com-
pute a normal LCS. We can use the LCS algorithm of [10]
or [11] just to do the baseOperation for each match. Then,
per match we would only need O(log log p) time [10, 11],
requiring a total of O(R log log p) time to perform all the
baseOperations.

Now, we focus on the weightOperations. Our goal is to
completely avoid any RMQ preprocessing. We need to mod-
ify the weightOperation as follows. We will use the vEB
tree for this purpose. Recall that we want to find the max-
imum value of K in the weighted query window. Fur-
thermore, note that, only the matched positions of K in
the weighted query window are important in the calcula-
tion. So instead of maintaining the array K, we maintain
a vEB tree where always the appropriate number (q in this
case) of matches (with values after the addition of the rel-
ative weights) are kept. And as the computation moves
from one match to the next, to maintain the appropriate
weighted query window, only one element (corresponding
to a match) is added to the vEB tree and at most one el-
ement is deleted. Also note that we need not delete any
element if the current weighted query window has fewer
matches than q.

When we need the maximum value of the weighted query
window, we just find the maximum from the vEB tree which
can also be found in O(log log p) time (by inserting a ficti-
tious element having infinite value and then deleting it after
computing its predecessor). As we need to insert and delete
constant number of elements from the vEB tree for each
match, this can be done in O(R log log p) time on the whole.
Like before, we would need to deduct the appropriate value
((|Mi| + 1 − number((i, j)) in this case) from the returned
maximum to do the proper adjustment.

51

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Finally, the computation of the setM in the prescribed or-
der can be done following the preprocessing algorithm of [10,
11] which runs in O(R log log p + N) time. So, we have an
algorithm solving our problem in O(R log log p+N) time.

4. CONCLUSIONS
In this paper, we have studied the longest common sub-
sequence problem for two strings, where one of the input
strings is run length encoded. We have presented two novel
algorithms, namely LCS RLE-I and LCS RLE-II to solve
the problem. We have first presented LCS RLE-I combin-
ing some new ideas with the techniques used in [10, 11].
LCS RLE-I runs in O(nP) time, which matches the best
algorithm in the literature. Then we present LCS RLE-II
which runs in O(R log log p+N) time. Observe that in the
worst case, R = O(nP) and hence the worst case running
time of LCS RLE-II is slightly worse than the best algorithm
in the literature. However, in many cases R = O(nP), and
our algorithm would show superior behavior in these cases.
In particular, if R < pN/ log log p, LCS RLE-II will outper-
form the best algorithm in the literature.

Additionally, if we run Mitchell’s algorithm (the best al-
gorithm in the literature for two RLE strings) in our setting,
the running time would be O((R + p + n) log(R + p + n)),
which clearly is worse than ours. Also, employing some of
the insights of Mitchel [7], we believe, our work can be ex-
tended to the version where both the input are RLE strings.
Another research direction could be to implement the algo-
rithms in the literature along the new ones proposed here
and to compare them against each other from a practical
point of view.

5. REFERENCES
[1] H.Y. Ann, C.B. Yang, C.T. Tseng, and C.Y. Hor. A

fast and simple algorithm for computing the longest
common subsequence of run-length encoded strings.
Information Processing Letters, 108(6):360–364, 2008.

[2] A. Apostolico, G.M. Landau, and S. Skiena. Matching
for run-length encoded strings. J. Complexity,
15(1):4–16, 1999.

[3] M.A. Bender and M. Farach-Colton. The lca problem
revisited. In LATIN, pages 88–94, 2000.

[4] V. Freschi and A. Bogliolo. Longest common
subsequence between run-length-encoded strings: a
new algorithm with improved parallelism. Information
Processing Letters, 90(4):167–173, 2004.

[5] H. Gabow, J. Bentley, and R. Tarjan. Scaling and
related techniques for geometry problems. In STOC,
pages 135–143, 1984.

[6] Y.W. Jia Jie Liu and R.C.T. Lee. Finding a longest
common subsequence between a run-length-encoded
string and an uncompressed string. J. Complexity,
24(2):173–184, 2008.

[7] J. Mitchell. A geometric shortest path problem, with
application to computing a longest common
subsequence in run-length encoded strings. Technical
Report Department of Applied Mathematics, SUNY
Stony Brook, 1997.

[8] M.S. Rahman and C.S. Iliopoulos. Algorithms for
computing variants of the longest common
subsequence problem. In ISAAC, pages 399–408, 2006.

[9] M.S. Rahman and C.S. Iliopoulos. Algorithms for
computing variants of the longest common
subsequence problem. Theoritical Computer Science,
395(2-3):255–267, 2008.

[10] M.S. Rahman and C.S. Iliopoulos. New efficient
algorithms for the lcs and constrained lcs problems.
Information Processing Letters, 106(1):13–18, 2008.

[11] M.S. Rahman and C.S. Iliopoulos. A new efficient
algorithm for computing the longest common
subsequence. Theoritical Computer Science,
45(2):355–371, 2009.

[12] E.E.K. Sayoood. Introduction to data compression.
Morgan Kaufmann Publishers Inc, 2000.

[13] P. van Emde Boas. Preserving order in a forest in less
than logarithmic time and linear space. Information
Processing Letters, 6:80–82, 1977.

52

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Prefix transpositions on binary and ternary strings∗

Amit Kumar Dutta
Department of CSE, BUET
Dhaka-1000, Bangladesh

amit@csebuet.org

Masud Hasan
Department of CSE, BUET
Dhaka-1000, Bangladesh

masudhasan-
@cse.buet.ac.bd

M. Sohel Rahman
Department of CSE, BUET
Dhaka-1000, Bangladesh

msrahman-
@cse.buet.ac.bd

ABSTRACT
The problem sorting by Prefix Transpositions asks for the
minimum number of prefix transpositions required to sort
the elements of a given permutation. In this paper, we
study a variant of this problem where the prefix transpo-
sitions act not on permutations but on strings over a fixed
size alphabet. Here, we determine the minimum number of
prefix transpositions required to sort the binary and ternary
strings, with polynomial time algorithms for these sorting
problems.

1. INTRODUCTION
The transposition distance between two permutations (and
the related problem of sorting by transposition) is used to
estimate the number of global mutations between genomes
and can be used by molecular biologists to infer evolution-
ary and functional relationships. A transposition involves
swapping two adjacent substrings of the permutation. In a
prefix transposition, one of them must be a prefix. Sorting
by prefix transposition is the problem of finding the mini-
mum number of prefix transpositions needed to transform a
given permutation into the identity permutation. In the lit-
erature, other interesting problems include sorting by other
operations like reversals, prefix reversals, block interchange
etc.

A natural variant of the aforementioned sorting problems is
to consider them not on permutations but on strings over
fixed size alphabets. This shift is inspired by the biologi-
cal observation that multiple “copies” of the same gene can
appear at various places along the genome [4, 5]. Indeed,
recent works by Christie and Irving [2], Radcliffe et al. [6]
and Hurkens et al. [4, 5] explore the consequences of switch-
ing from permutations to strings. Notably, such rearrange-
ment operations on the strings have been found to be in-

∗This research work was conducted as part of the under-
graduate thesis of Dutta under the supervision of Hasan and
Rahman.

teresting and important in the study of orthologous gene
assignment [1], especially if the strings have only low level
of symbol repetition.

The work of Chen et al. [1], presented for both reversals
and transpositions, polynomial-time algorithms for comput-
ing the minimum number of operations to sort a given binary
string. They also gave exact constructive diameter results on
binary strings. Radcliff et al. [6] on the other hand gave re-
fined and generalized reversal diameter results for non fixed
size alphabets. Additionally, they gave a polynomial-time
algorithm for optimally sorting a ternary (3 letter alphabet)
string with reversals. Finally, Hurkens et al. [4, 5] introduced
grouping (a weaker form of sorting), where identical symbols
need only be grouped together, while a group can be in any
order. In the sequel, they gave a complete characterization
of the minimum number of prefix reversals required to group
(and sort) binary and ternary strings.

In this paper, we follow up the work of [4, 5] and consider
prefix transposition to group and sort binary and ternary
strings. Notably, as a future work in [4, 5], the authors
raised the issue of considering other genome arrangement
operators. In particular, here, we find the minimum number
of prefix transpositions required to group and sort binary or
ternary strings. It may be noted that, apart from being an
useful aid for sorting, grouping itself is a problem of interest
in its own right [3].

The rest of the paper is organized as follows. In Section 2, we
discuss the preliminary concepts and discuss some notations
we use. Section 3 is devoted to grouping, where we present
and prove the corresponding bounds. Then, in Section 4,
we extend the results of grouping to get the corresponding
bounds for sorting. Finally, we briefly conclude in Section 5.

2. PRELIMINARIES
We follow the notations and definitions used in [4, 5], which
are briefly reviewed below for the sake of completeness. We
use [k] to denote the first k non-negative integers {0, 1, . . . , k−
1}. A k-ary string is a string over the alphabet Σ = [k].
Moreover, a string s = s1s2 . . . sn of length n is said to be
fully k-ary, or to have arity k, if the set of symbols occurring
in it is [k].

A prefix transposition f(1, x, y) on string s of length n,
where 1 < x < y ≤ (n + 1), is an rearrangement event that
transforms s into [s[x] . . . s[y − 1]s[1] . . . s[x − 1]s[y] . . . s[n]].

53

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

The prefix transposition distance ds(s) of a string s is de-
fined as the number of prefix transpositions required to sort
the string. Note that, after a transposition operation is
performed, the two adjacent symbols of the corresponding
string may be identical. We consider two strings to be equiv-
alent if one can be transformed into the other by repeatedly
duplicating (by transposing) symbols and eliminating adja-
cent identical symbols. This elimination of adjacent identi-
cal symbols gives us a reduced string, i.e., a string of reduced
length and this process is referred to as reduction. As rep-
resentatives of the equivalence classes we take the shortest
string of each class. Clearly, these are the strings where
adjacent symbols always differ. The process of transform-
ing a string into the representative string of its equivalence
class is sometimes referred to as normalization. Therefore,
the process of normalization basically comprises of repeated
transposition and reduction.

For example, let s = bababab and we want to apply op-
eration f(1, 3, 6). Now, s[x] . . . s[y − 1] = s[3] . . . s[5] = bab,
s[1] . . . s[x−1] = s[1] . . . s[2] = ba, s[y] . . . s[n] = s[6] . . . s[7] =
ab. Therefore, after applying the operation, we get, s =
s[3] . . . s[5]s[1] . . . s[2]s[6] . . . s[7] = babbaab = ba bbaa b =
ba ba b = babab

A reduction that decreases the string length by x is called
an x transposition. So, if x = 0, then we have a 0 transpo-
sition. The above example illustrates a 2 transposition.

3. GROUPING
The task of sorting a string can be divided into two sub-
problems, namely, grouping the identical symbols together
and then putting the groups of identical symbols in the right
order. The grouping distance dg(s) of a fully k ary string
s is defined as the minimum number of prefix transposition
required to reduce the string to one of length k.

3.1 Grouping Binary Strings
As strings are normalized, only 2 kinds of binary strings
are possible, namely, 010101 . . . 010 and 101010 . . . 101. The
grouping of binary strings seems to be quite easy and obvi-
ous. The following bound is easily achieved.

Theorem 1. (Bound for Binary strings) Let s be a fully
binary string. Then, dg(s) = �n−k

2
�.

Proof. We can always have a 2 transposition if |s| is
even. However, if |s| is odd, we need an extra 1 transposi-
tion. So, the upper bound is dg(s)) = �n−k

2
�.

We illustrate the above result with the help of an example.
Let s = ababab. Then we can continue as follows: s =
ababab = ababab = aabbab = abab = abab = aabb = ab.
Here, we need two 2 transpositions to group this string. So,
dg(s) = 2.

3.2 Grouping Ternary Strings
In this section, we focus on ternary strings. As it seems,
grouping ternary strings is not as easy as grouping binary
strings. We start with the following theorem.

Lemma 1. In a fully ternary string, we can always per-
form a 1 transposition.

Proof. We take a ternary string s of length n > 3. Now,
we take a prefix a of length k. Now if a[1] occurs at the
suffix at position i, we can transpose a[1] . . . a[i−1] with a[i].
Then, a[1] and a[i] are adjacent and we can eliminate one of
the two. Otherwise, if a[k] occurs at the suffix at position
i, then we can transpose a[1] . . . a[k] with a[k + 1] . . . a[i −
1]. Then a[k] and a[i] are adjacent and as before, we can
eliminate one of them. Since, one of the above cases always
occurs for ternary strings, the result follows.

3.3 Grouping distance for Ternary strings
The lower bound for the grouping of a ternary string remains
the same as that of binary strings; but, as can be seen from
Theorem 2 below, the upper bound differs. We first give an
easy but useful lemma.

Lemma 2. Suppose s[1..n] is a fully ternary string. If we
have a prefix s[1..i], 1 < i ≤ n − 2 such that s[1] = s[n − 1]
and s[i] = s[n], then we have a 2 transposition.

The proof of Lemma 2 is very easy and hence is omitted.

Theorem 2. (Bound for Ternary strings) Let s be a fully
ternary string. Then, �n−k

2
� ≤ dg(s) ≤ �n−k

2
� + 1 where n

is the length of the string and k is the arity.

Proof. First we prove the lower bound. Here, k = 3. If
we can always give a 2 transposition, then at each operation
the string length is decremented by 2 and if |s| is odd, we
need an extra 1 transposition. Hence, we have �n−k

2
� ≤

dg(s).

Let us concentrate on the upper bound. As strings are fully
ternary, we don’t need to work with n ≤ 3. Now, if we apply
the upper bound for n = 4, 5 and 6, we have dg(s) = 2, 2 and
3 respectively. It is easy to realize that, by Lemma 1, we
can always satisfy the above upper bound. Thus the upper
bound is proved for n < 7.

Now we consider n ≥ 7. In what follows, we only consider
strings starting with 1. This doesn’t lose the generality since
we can always use relabeling for strings starting with 0 or 2.
Now, note carefully that for any string starting with 1, we
can only have one of the following eight prefixes of length 4:

1012, 1010, 1021, 1020, 1201, 1202, 1210 and 1212. (1)

Here we give the tree diagram of all strings starting with 1:

54

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

1

10

101

1010 1012

102

1021 1020

12

120

1201 1202

121

1210 1212

Now note that, the upper bound of Theorem 2 tells us we
can give at most three 1 transpositions when n is even (i.e.
n − k is odd) and two 1 transpositions when n is odd (i.e.
n− k is even). Note that, if we could give a 2 transposition
at each step, we would get the bound of �n−k

2
�. For a n

length string, if we can give a 2 transposition, the resulted
reduced string may start with 1, 0 or 2. For the latter two
cases, we can use relabeling as mentioned before. Therefore
we can safely state that the reduced string will have any of
the 8 prefixes of List 1. Hence, it suffices to prove the bound
considering each of the prefixes of List 1. We will now follow
the following strategy:

We will take each of the prefixes of List 1 and
expand it (by adding symbols) to construct all
possible strings of length greater than or equal to
7. Strictly speaking, we will not consider all pos-
sible strings; rather we will continue to expand
until we get a 2 transposition, since afterwards,
any further expansion would also guaranty a 2-
transposition. Suppose s is one such string. We
will take s and try to give a 2 transposition with
any of its prefix. If we succeed, then, clearly, we
are moving towards the best case and we only
need to work with the reduced string. If we can’t
give a 2 transposition, we specifically deal with
s and show that the bound holds. Now if we
can give a 2 transposition, the reduced string
will have any of the 8 prefixes (using relabeling if
needed) and we will show that all strings of these
cases will follow the bound.

Firstly it is easy to note that, the prefixes 1010 and 1212
themselves have 2-transpositions (Lemma 2). Therefore, we
can safely exclude them from the following discussion. In
what follows, when we refer to the prefixes of List 1, we
would actually mean all the prefixes excluding 1010 and
1212. Now, to expand the prefixes, if we add 10 or 12, all
of them would be able to give a 2 transposition (Lemma 2).
Therefore, in what follows, we consider the other cases. Now
we analyze each of the prefixes below.

1012
We first give the tree diagram of all string having prefix 1012

1012

101201

1012010 1012012

101202

1012020 1012021

If we add 01, we can only add (By ‘add’ we mean append)
0 or 2. The resulting expanded string becomes 1012010 or
1012012. In both cases, we can give a 2 transposition. On
the other hand, if we add 02, we can add 0 or 1 next and the
string becomes 1012020 or 1012021. The string 1012020 sat-
isfies the bound as follows: 1012020 ⇒ 012020 ⇒ 012020 ⇒
0120 ⇒ 0120 ⇒ 120. Here, n = 7 and we need only 3 trans-
positions holding the bound true. Now if we add 1, the string
becomes 10120201. For this one as well the bound holds
as follows: 10120201 ⇒ 0120201 ⇒ 0120201 ⇒ 20201 ⇒
20201 ⇒ 201. Here, n = 8 and we needed 3 transpositions.
Now, it can be easily checked that strings like 1012020(20)∗

or 1012020(20)∗1 the bound holds using the same strategy
as shown above. Adding anything with 1012020(20)∗1 will
also give a 2 transposition as follows. Clearly, we first need
to add either 0 or 2 and immediately Lemma 2 would apply.

Now we consider 1012021. The bound holds for this one as
well as follows: 1012021 ⇒ 012020 ⇒ 012021 ⇒ 0121 ⇒
0121 ⇒ 201. Now, strings like 1012(02)∗1 can also be han-
dled similarly hence the bound holds for them as well. Adding
anything with 1012(02)∗1 will also give a 2 transposition
(Lemma 2).

1021
This prefix is ending with 1 and adding anything will give a
2 transposition (Lemma 2).

1020
We first add 21 with this prefix. Then, adding anything
with 102021 will give a 2 transposition (Lemma 2). Now,
for 102(02)+1, we need a 1 transposition to move the initial
1 at the end. Now the upper bound holds because the rest
of the string is binary (Theorem 1). Also, adding anything
with 102(02)+1 will give a 2 transposition (Lemma 2).

Now, if we add 20 with the prefix we get 102020. Next we
add 1 or 2 and get 1020201 or 1020202 respectively. For
1020201, the bound holds as follows: 1020201 ⇒ 020201 ⇒
020201 ⇒ 0201 ⇒ 0201 ⇒ 201. All strings like 1020(20)+1
can also be handled similarly and hence the bound holds for
them as well. And adding anything with 1020(20)+1 will
give a 2 transposition (Lemma 2).

Now for 1020202, the bound holds as follows: 1020202 ⇒
210202 ⇒ 210202 ⇒ 2102 ⇒ 2102 ⇒ 102. Now, string like
10202(02)+ can be handled similarly and hence the bound
holds. For 10202(02)+1, we need a 1 transposition to move
the initial 1 at the end. Now the upper bound holds be-
cause the rest of the string is binary (Theorem 1). Also
adding anything with 10202(02)+1 will give a 2 transposi-
tion (Lemma 2).

1201
This prefix is ending with a 1 and adding anything will give
a 2 transposition (Lemma 2).

1202
Here, we can employ relabeling and map 2 to 0 and 0 to 2 to
get 1020. Now recall that we have already considered 1020
before and hence we are done.

55

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

1210
Here we can again employ relabeling and map 2 to 0 and
0 to 2 to get 1012. And since we have already considered
1012, we are done.

And this completes our proof.

4. SORTING
The sorting distance ds(s) of a fully k ary string s is defined
as the minimum number of prefix transposition required to
sort the string to one of length k. We again consider nor-
malized strings.

4.1 Sorting Binary Strings
Theorem 3. (Bound for Binary strings) Let s be a fully

binary string. Then, ds(s) ≤ �n−k
2

�.

Proof. As binary strings have only 2 letters, after group-
ing they are already sorted (in ascending or descending or-
der). So, the upper bound is ds(s) ≤ �n−k

2
�.

4.2 Sorting Ternary Strings
Theorem 4. (Bound for Ternary strings) Let s be a fully

Ternary string. Then, upper bound for sorting ternary string
is dg(s) ≤ �n−k

2
+ 2�.

Proof. After grouping a ternary string, we have the fol-
lowing grouped strings: 012, 021, 102, 120, 201 and 210. Among
these, 012 and 210 are already sorted. We need one more 0
transposition to sort 021, 102, 120 and 201. Hence the result
follows.

5. CONCLUSION
In this paper, we have discussed grouping and sorting of
fully binary and ternary strings when the allowed opera-
tion is prefix transposition. Following the work of [4, 5],
we have handled grouping by prefix transpositions of binary
and ternary strings first and extended the results for sort-
ing. In particular we have proved that, for binary strings
the grouping distance dg(s) = �n−k

2
� and for ternary string

we have �n−k
2

� ≤ dg(s) ≤ �n−k
2

� + 1, where n is the length
of the string and k is the arity. On the other hand, for sort-
ing binary and ternary strings the sorting distance ds(s) is
upper bounded by �n−k

2
� and �n−k

2
�+2 respectively. As has

already been mentioned, we are now considering the higher-
arity alphabets as an extension of our work.

6. REFERENCES
[1] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong,

S. Lonardi, and T. Jiang. Assignment of orthologous
genes via genome rearrangement. IEEE/ACM Trans.
Comput. Biology Bioinform., 2(4):302–315, 2005.

[2] D.A. Christie and R.W. Irving. Sorting strings by
reversals and by transpositions. SIAM J. Discrete
Math., 14(2):193–206, 2001.

[3] H. Eriksson, K. Eriksson, J. Karlander, L.J. Svensson,
and J. Wästlund. Sorting a bridge hand. Discrete
Mathematics, 241(1-3):289–300, 2001.

[4] C.A.J. Hurkens, L. van Iersel, J. Keijsper, S. Kelk,
L. Stougie, and J. Tromp. Prefix reversals on binary

and ternary strings. SIAM J. Discrete Math.,
21(3):592–611, 2007.

[5] C.A.J. Hurkens, L. van Iersel, J. Keijsper, S. Kelk,
L. Stougie, and J. Tromp. Prefix reversals on binary
and ternary strings. In AB, pages 292–306, 2007.

[6] A.J. Radcliffe, A.D. Scott and E.L. Wilmer Reversals
and transpositions over finite alphabets. SIAM J.
Discrete Math., 2006.

56

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Embedding of complete and nearly complete binary trees
into hypercubes

Aleksander Vesel
University of Maribor

Faculty of Natural Sciences and Mathematics
Koroška c. 160, Maribor, Slovenia

vesel@uni-mb.si

ABSTRACT
A new simple algorithm for optimal embedding of complete
binary trees into hypercubes as well as a node-by-node al-
gorithm for embedding of nearly complete binary trees into
hypercubes are presented.

Categories and Subject Descriptors
G.2.2 [Discrete mathematics]: Algorithms

Keywords
binary trees, algorithms, embedding

1. INTRODUCTION
Hypercubes and binary trees are omnipresent in computer
science. In particular, hypercubes are very popular models
for parallel computation because of their regularity, recur-
sive structure and the ease of routing. On the other hand,
binary trees can represent the basic computational structure
of divide-and-conquer or branch-and-bound algorithms. In
many cases however, it is more suitable that the internal
structure of an algorithm is modeled by a more general struc-
ture - a nearly complete binary tree.

In this paper we consider the problem of embedding a (nearly)
complete binary tree in a hypercube. This problem occurs
during the implementation of divide-and-conquer algorithms
in a hypercube network, e.g., see [3, 5]. An embedding is a
mapping from the guest graph, representing the communi-
cation structure of the processes, into the the host graph,
representing the communication network of the processors.
Therefore, the problem of allocating processes to processors
in a multiprocessor system is also known as the mapping
problem.

A tree is a connected acyclic graph. One vertex is distin-
guished and called the root. A vertex of degree one is called
a leaf of the tree if it is not the root. The level of a vertex v
in a tree is the number of vertices on the simple path from

the root to v. Note that the level of the root is one. The
height of a tree T is the largest level of a vertex in T . A
vertex u is called a child of v if u is adjacent to v and the
level of u is greater than the level of v. If u is a child of v,
then v is called the parent of u.

A full binary tree is a tree in which every node other than
the leaves has two children. A full binary tree is ordered, i.e.
we distinguish between left and right children. A complete
binary tree is a full binary tree in which all leaves are at
the same level. A nearly complete binary tree of height h is
composed of a complete binary tree of height h−1 and with
some nodes at level h (not necessary positioned to the left).

The hypercube of order d and denoted Qd is the graph G
where the vertex set V (G) is the set of all binary strings
u1u2 . . . ud, ui ∈ {0, 1}. Two vertices x, y ∈ V (G) are ad-
jacent in Qd if and only if x and y differ in precisely one
place.

An embedding of a graph G into a graph H is an injection
f : V (G)→ V (H) such that if (u, v) is an edge in E(G) then
(f(u), f(v)) is an edge in E(H).

For binary vectors s, t ∈ {0, 1}n let s⊕t denote the coordinate-
wise addition modulo two, e.g. 100011 ⊕ 000001 = 100010.
Let eni be the binary vector u1, u2, . . . , un with ui = 1 and
uj = 0, j �= i. If s is a binary vector of length n, then we
will call the operation eni ⊕ s a reflection. We will also use
the ”+” symbol as the concatenation operator, i.e. s+t joins
two binary vectors s and t end to end. If we concatenate a
binary vector with a single bit (0 or 1), than we call this op-
eration a projection. For a binary vector s of length n, s+0
and s + 1 are projections of s into two disjoint subcubes of
order n of Qn+1.

The minimum h required for an embedding of a graph G into
Qh is called the cubical dimension of G. Deciding whether
there exists an embedding of a given tree into a hypercube
of a given dimension is known to be NP-complete [4]. More-
over, even in case of trees with bounded degrees, their cubi-
cal dimensions are unknown in most cases.

Obviously, if G is a graph such that 2h ≥ |V (G)| > 2h−1,
then the cubical dimension of G is at least h. However, it is
well known that the complete binary tree on 2h − 1 vertices
cannot be embedded into Qh for h ≥ 3.

57

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Havel in [1] conjectured that every binary tree T such that
2h ≥ |V (T)| > 2h−1 has an embedding into Qh+1. The
conjecture is still open, but there are many partial results
supporting this assertion. It has been shown, for example,
that a complete binary tree of height h can be embedded
into the hypercube of order h+ 1, e.g. [3, 5].

2. COMPLETE BINARY TREE
Let Ch denote the complete binary tree of height h. Let also
rh denote the root of Ch and let Cl

h and Cr
h denote the left

and the right subtree of Ch, respectively. Obviously, Cl
h and

Cr
h are both complete binary trees of height h− 1.

Let σl : V (Cl
h)→ V (Ch−1) be the mapping that in the nat-

ural way maps each vertex v ∈ V (Cl
h) to the corresponding

vertex of Ch−1, e.g. if v is the root of Cl
h, then σl(v) = rh−1.

Analogously we define the mapping σr : V (Cr
h)→ V (Ch−1).

0000

0 010

11 00
1001

0001

0110 0011

Figure 1: β3 - the mapping of C3

For each h ≥ 3, we define a mapping βh : V (Ch)→ {0, 1}h+1

as follows. The mapping β3 : V (C3) → {0, 1}4 is depicted
in Fig. 1, while for h > 3 the mapping is given by

βh(v)=

⎧
⎪⎪⎨

⎪⎪⎩

0h+1, v = rh
βh−1(σr(v)) + 1, v∈V (Cr

h)
βh−1(σl(v))⊕ 10h−1+0, v∈V (Cl

h), h even
βh−1(σl(v))⊕ 0h−3100+0, v∈V (Cl

h), h odd .

For any v of Ch, the string βh(v) will be also called a code
word defined by βh in the sequel.

Theorem 1. Let h ≥ 3. Then βh defines an embedding
of the complete binary tree of height h in the hypercube of
order h+ 1.

The basis of the proof is the following lemma.

Lemma 1. Let h ≥ 3. Then βh(v) = 0h+1 if and only if
v is the root of Ch.

Proof. If v is the root of Ch, then βh(v) = 0h+1 by
definition. On the other hand, the recursive definition of βh

implies, that if v is not the root of Ch, then βh(v) is obtained
as a sequence of projections and reflections either from the
root of the Ci+1, i.e. βi+1(ri+1) = 00i0, h > i ≥ 3, or from
a code word defined by β3.

Suppose first that βh(v) derives from 00i0. Suppose also
that i is even. Some of the code words derived from 00i0

can be seen in the tree depicted in Fig. 2. The root of
the tree is 00i0, while the left and the right child of 00i0
are obtained as code words derived from it in the left and
the right subtree of Ci+2, respectively. Analogously, the left
and the right children of 10i000 and 00i001 are code words
in Ci+3, etc.

Note that the definition of βj for j ≥ 4 implies that βj(v)
is derived from a code word s of Cj−1 such that either the
first or the (j − 3)-th bit of s is reversed. It follows that
from a code word s of Cj−1 with a 1 in at least one of the
positions: 2, 3, . . . , j−4, a code word of the form 0h+1 cannot
be derived. Since every leaf of the tree in Fig. 2 in at least
one of those positions possesses entry 1, it follows that 0h+1

cannot derive from 00i0 if i is even. It is not difficult to see
that a similar tree (having leaves of length j with a 1 in at
least one of the positions 2, 3, . . . , j − 4) can be derived for
00i0, where i is odd.

For a βh(v) derived from a code word defined by β3 observe
first that all code words of the left subtree of C3 depicted in
Fig. 1 posses 1 at the second place, which implies that 0h+1

cannot be derived from any of them. For βh(v) derived from
a code word of the right subtree of β3, observe for example
the tree depicted for code word 0001 the in Fig. 3. From the
same arguments as above we can conclude that 0h+1 cannot
derive from any code word defined by β3 and the proof is
complete.

10 000

0 00 0

00 001

10 0001 0 0010 1

0 0010 11

0 0010 1110 000 0110

10 00 01100 0 000 01101

10 0010 1

10 0010 11

10 0010 1110 0 1100 001

10 0 10 1 10

1 110 000

1 110 001 0 1 110 000 1

1 110 000 1100 000 1011

0 0000 10

0 0000 101

0 0000 101110 1010000

0 000 1100

10 1000 00 1010

i

i

i
i

i

i

i

i

i i i i

i i i

i

i

i i i i

i

i i i i

i

Figure 2: Code words derived from 00i0 when i is
even

0001

00011

000111

00011111 111000

001110

1 0100

1 01010

1 0101100001010

1 11000

Figure 3: Some code words derived from 0001

Proof Proof (of Theorem 1). The proof is by induc-
tion on h. The claim obviously holds for β3. Suppose also
that the claim holds for h. Note first that projections maps
the vertices of Cl

h+1 and Cr
h+1 into two disjoint hypercubes.

58

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Moreover, reflections of an embedding in a hypercube pre-
serve Hamming distance. Therefore βh+1 is an embedding
of Cl

h+1 and Cr
h+1 in the hypercube of order h + 1. Fi-

nally, since the root of Ch+1 and the root of Cl
h+1 (as well

as Cr
h+1) differ in precisely one bit, we conclude that βh+1

embeds Ch+1 into Qh+1 and the proof is complete.

Theorem 1 is the basis for the algorithm to compute an
optimal embedding of the complete binary tree of height h
in Qh+1.

We first present the algorithm to calculate an embedding of
the complete binary tree of height h from an embedding of
the complete binary tree of height h−1. It is assumed in the
algorithm, that if v is an arbitrary node of a complete binary
tree T , then b(v) is the code word of v and p(v) a parent of
v in T . Furthermore, r denotes the root of T and Tl and Tr

denote the left and the right subtree of T , respectively.

Procedure NEW TREE
input: h, T , b { h > 3, b an embedding of T = Ch−1 into
Qh+1 }
output: b {An embedding of T = Ch into Qh+1}

begin
traverse Tr from level h to level 2
for every v ∈ Tr do b(v) := b(p(v))) + 1;

if h mod 2 = 0 then
traverse Tl from level h to level 2
for every v ∈ Tl do
b(v) := b(p(v))⊕ 10h−1 + 0;

else
traverse Tl from level h to level 2
for every v ∈ Tl do
b(v) := b(p(v)))⊕ 0h−3100 + 0;

r := 0h+1; { The new root of T }
end.

We next describe the algorithm to compute an optimal em-
bedding of the complete binary tree of height h in a hyper-
cube.

Procedure CODES
input: h {height of a tree, h ≥ 3}
output: T , b {T is of height h with an embedding b}

begin
T := C3.
Set b(v) for every v ∈ T as in Fig. 1;
for i := 4 to h do begin
Augment T with new level of nodes to
obtain Ci;
NEW TREE(i, T , b);

end.

Theorem 2. For any h ≥ 3, CODES embeds Ch into
Qh+1 in linear time and space.

Proof. The correctness of the algorithm is proved by
induction on h. If h = 3, then the embedding is given in
Step 2, the correctness of which can be verified by Fig. 1.

Assume now that for i = h− 1 the algorithm correctly com-
pute an embedding of T . In other words, when NEW TREE
is called in Step 3 for i = h, the vector b corresponds to
βh−1. Moreover, for a node v ∈ Tl (v ∈ Tr), the old value of
b(p(v))) corresponds to βh−1(σr(v)) (βh−1(σl(v))). There-
fore, since the nodes of T are traversed from the last level
to the roots of the subtrees and since NEW TREE accu-
rately follows the definition of βh, we can conclude that the
embedding is correct.

T , p, and b can obviously be represented in linear space,
therefore we only consider the time complexity. Let n :=
2h − 1 denote the number of nodes of a complete binary
tree of height h. Note first that NEW TREE computes an
embedding b in time which is linear in the size of T . Since
the number of vertices of T in i-th iteration of the for loop
equals 2i − 1, the total number of steps of the algorithm is
given by

h∑

i=4

2i − 1 = 2h+1 − 12 = O(n) .

This argument completes the proof.

3. NEARLY COMPLETE BINARY TREE
In this section we present a simple node-by-node algorithm
for constructing an embedding of a nearly complete binary
tree into a hypercube. We assume that in each time step a
nearly complete binary tree can grow by one node inserted at
the last level of a tree. Note, that in [2] a somewhat similar
approach has been studied, where the complete binary tree
grows by a complete level of its leaves.

The algorithm presented herein computes the map of the
nodes of a new tree using the map of their parent node.
Moreover, if a new node does not change the height of a
tree, the old nodes need not to be remapped.

The algorithm of the previous section implies that the em-
bedding of Ch can be performed by using an embedding of
Ch−1 in such a way that the embedding of a node v is com-
puted from the ”old” embedding of its parent node.

This observation leads to a node-by-node algorithm for em-
bedding of nearly complete binary trees into hypercubes.
The algorithm augments a given nearly complete binary tree
with one node, which is inserted at the level h and computes
the mapping of the augmented tree. We will show that in
the majority of cases the algorithm is able to determine the
embedding of the augmented tree simply by expanding an
embedding with the map of the new node. Moreover, the
map of the new node can be computed with ease from the
map of its parent node.

If a nearly complete binary tree T of height h with an em-
bedding into Qh+1 is augmented with one new node, then
for the resulting nearly complete binary tree T ′ the embed-

59

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

ding into Qh+1 (or Qh+2, if the height of T ′ is h + 1) is
computed. The new node can be

(i) a leaf at level h, if T is not complete or

(ii) a leaf at level h+ 1, if T is complete.

In order to obtain an embedding for T ′ we first show the
following lemma.

Lemma 2. Let for h ≥ 3, v be a leaf of Ch and u the
parent of v in Ch. Then

βh(v)=

{
βh(u)⊕ 10h, v is the left child of u
βh(u)⊕ 001h−30, v is the right child of u

Proof. The proof is by induction with respect to h. The
claim obviously holds if h = 3 as can be seen in Fig 1.
Let us denote v a leaf of Ch+1 and u the parent of v. If v
(and u) is in the right subtree of Ch+1, then by inductive
hypothesis βh(σr(v)) and βh(σr(u)) differ either in the first
bit, if v is the left child of u, or in the third bit, if v is
the right child of u. It is straightforward to see now that
βh+1(v) = βh(σr(v))+ 1 and βh+1(u) = βh(σr(u))+ 1 differ
either in the first or in the third bit. If v is in the left subtree
of Ch+1, the proof is analogous.

In the following algorithm, let for an arbitrary vertex u of
a nearly complete binary tree T , b(u) and p(u) denote the
code word of u and the parent of u in T , respectively.

Procedure NEW NODE
input: h, T , b, v { b is the embedding of T , h ≥ 3, v is a
new node }
output: T , h, b { An augmented tree of height h with an
embedding b }

begin
if T is complete then begin

NEW TREE (h, T , b);
h := h + 1;

end;
Insert v at the level h in T ;
if v is the left child of p(v) then

b(v) := b(p(v)))⊕ 10h;
else b(v) := b(p(v)))⊕ 0010h−2;

end.

In order to obtain an embedding of a nearly complete binary
tree with NEW NODE, before the algorithms is first called,
Step 1 and Step 2 of CODES have to be executed. T is then
the complete binary tree of height 3 with the embedding b.

Theorem 3. If T is a nearly complete binary tree of height
h > 3 and b an embedding of T into Qh+1, then NEW NODE
correctly embeds T ′ either

(i) into Qh+2, if T is complete or

(ii) into Qh+1, if T is not complete.

Moreover, if T is C3 and b an embedding of C3 into Q4, then
NEW NODE correctly embeds T ′ into Q5.

Proof. Assume that T is either C3 or an arbitrary nearly
complete binary tree of height h > 3 and b its embedding
into Qh+1. If T is not complete, then the correctness of the
algorithm follows from Lemma 2.

Let then T be a complete binary tree. When NEW TREE
is called in Step 1, the value of h is not yet incremented, i.e.
the output of the procedure is the complete tree of height h
with an embedding into Qh+2. However, in Steps 2 and 3, T
is first augmented with a new node at level h+1 and then an
embedding into Qh+2 of the resulting nearly complete tree
of height h+ 1 is computed.

4. CONCLUSIONS
The following concluding comment concerning the time com-
plexity of the algorithm is in order. The algorithm remaps
the nodes of T only if T is a complete binary tree. In other
cases a remapping is not performed. Clearly, the embedding
of a new node depends only on the map of its parent node
and can be performed in constant time. However, even in
the case when remapping is needed, the computation of the
new embedding can be done independently in each node v
such that only the code word of a parent node of v is used.
It follows that the remapping can be computed on the hy-
percube in parallel in constant time.

5. REFERENCES
[1] I. Havel. On hamiltonian circuits and spanning trees of

hypercubes. Časopis pro Pěstováni Matematiky,
2(209):135 –152, 1984.

[2] V. Heun and E. W. Mayr. Optimal dynamic
embeddings of complete binary trees into hypercubes.
J. Parallel Distrib. Comput., 61(8):1110–1125, 2001.

[3] A. S. Wagner. Embedding the complete tree in the
hypercube. J. Parallel Distrib. Comput., 20(2):241–247,
1994.

[4] A. S. Wagner and D. G. Corneil. Embedding trees in a
hypercube is np-complete. SIAM J. Comput.,
19(3):570–590, 1990.

[5] A. Y. Wul. Embedding of tree networks into
hypercubes. J. Parallel Distrib. Comput., 2(3):238–249,
1985.

60

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Information set-distance

Joel Ratsaby
Electrical and Electronics Engineering Department

Ariel University Center of Samaria
Ariel 40700, ISRAEL

ratsaby@ariel.ac.il

ABSTRACT
Let |A| denote the cardinality of a finite set A. For any real
number x define t(x) = x if x ≥ 1 and 1 otherwise. For
any finite sets A,B let δ(A,B) = log2

(
t
(∣
∣B ∩A

∣
∣ |A|)). We

define a new set distance d(A,B) = max {δ (A,B) , δ (B,A)}
which may be applied to measure the distance between bi-
nary strings of different lengths. We prove that d is a semi-
metric on the space of sets of size at least 2. The triangle
inequality holds for triplets A, B, C that are not strictly
contained one in any of the other two.

1. INTRODUCTION
A basic problem in pattern recognition is to find a numerical
value that represents the dissimilarity or ‘distance’ between
any two input patterns of the domain. For instance, be-
tween two binary sequences that represent document files or
between genetic sequences of two living organisms. A good
distance is one which picks out only the ‘true’ dissimilari-
ties and ignores those that arise from irrelevant attributes
or due to noise. In most applications defining a meaningful
distance requires inside information about the domain, for
instance, in the field of information retrieval the distance
between two documents is weighted largely by words that
appear less frequently since the words which appear more
frequently are less informative. Typically, different domains
require the design of different distance functions which take
such specific prior knowledge into account. It can there-
fore be an expensive process to acquire expertise in order to
formulate a good distance. The pioneering paper of [4] in-
troduced a notion of complexity of finite binary string which
does not require any prior knowledge about the domain or
context represented by the string (this is sometimes referred
to as the universal property). This complexity (called the
production complexity of a string) is defined as the mini-
mal number of copy-operations needed to produce the string
from a starting short-string called the base.

In the current paper we are interested in developing a dis-
tance between two binary strings which also possesses this

universal property. Our approach is to consider a binary
string as a set of substrings. To represent the complexity
of such a set we use the notion of combinatorial entropy
[3] to introduce a new set-distance function. We start with
a distance for general sets and then apply it as a distance
between binary strings.

2. THE DISTANCE
In what follows, Ω is a given non-empty set which serves
as the domain of interest. The cardinality of any set A is
denoted by |A| and the set of all finite subsets of Ω is denoted
by PF (Ω). Define t : R→ R as follows:

t(x) =

{
x if x ≥ 1
1 otherwise .

Definition 1. For each pair of finite sets A,B ⊂ Ω define
the following function δ : PF (Ω)×PF (Ω)→ N0 which maps
a pair of finite sets into the non-negative integers,

δ(A,B) := log
(
t
(∣
∣B ∩A

∣
∣ |A|))

where A denotes the complement of the set A and log is with
respect to base 2. It is simple to realize that δ(A,B) equals
log
(∣
∣B ∩A

∣
∣ |A|) with the exception when A or B is empty

or B ⊆ A.

Remark 2. Note that δ is non-symmetric, i.e., δ(A,B) is not
necessarily equal to δ(B,A). Also, δ(A,B) = 0 when B ⊆ A
(not only when A = B).

From an information theoretical perspective [2] the value
log
∣
∣B ∩A

∣
∣ represents the additional description length (in

bits) of an element in B given a priori knowledge of the
set A. Hence we may view A as a partial ’dictionary’ while
the part of B that is not included in A takes an additional
log
∣
∣B ∩A

∣
∣ bits of description given A.

The following set will serve as the underlying space on which
we will consider our distance function. It is defined as

P+
F (Ω) := PF (Ω) \ {A ⊂ Ω : |A| ≤ 1} .

It is the power set of Ω but without the empty set and
singletons. We note that in practice for most domains, as
for instance the domain of binary strings considered later,
the restriction to sets of size greater than 1 is minor.

The following lemma will be useful in the proof of Theorem
5.

61

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Lemma 3. The function δ satisfies the triangle inequality
on any three elements A, B, C ∈ P+

F (Ω) none of which is
strictly contained in any of the other two.

Proof. Suppose A,B,C are any elements of P+
F (Ω) sat-

isfying the given condition. It suffices to show that

δ(A,C) ≤ δ(A,B) + δ(B,C). (2.1)

First we consider the special case where the triplet has an
identical pair. If A = C then by Remark 2 it follows that
δ(A,C) = 0 which is a trivial lower bound so (2.1) holds. If
A = B then δ(A,B) = 0 and both sides of (2.1) are equal
hence the inequality holds (similarly for the case of B = C).

Next we consider the case where
∣
∣C ∩A

∣
∣ ,
∣
∣B ∩A

∣
∣ ,
∣
∣C ∩B

∣
∣ ≥ 1. (2.2)

By definition of P+
F (Ω) we have |A| ≥ 2 hence

δ(A,C) = log
(
t
(∣
∣C ∩A

∣
∣ |A|))

= log
(∣
∣C ∩A

∣
∣ |A|) = log

∣
∣C ∩A

∣
∣+ log |A| .

Next, we claim that C∩A ⊆ (B ∩A
)∪(C ∩B

)
. If x ∈ C∩A

then x ∈ C and x ∈ A. Now, either x ∈ B or x ∈ B . If
x ∈ B then because x ∈ A it follows that x ∈ B ∩ A. If
x ∈ B then because x ∈ C it follows that x ∈ C ∩ B. This
proves the claim. Next, we have

δ(A,B) + δ(B,C)

= log |A|+ log
∣
∣B ∩A

∣
∣+ log |B|+ log

∣
∣C ∩B

∣
∣ .

It suffices to show that

log
∣
∣C ∩A

∣
∣ ≤ log

∣
∣B ∩A

∣
∣+ log

∣
∣C ∩B

∣
∣+ log |B| . (2.3)

We claim that if three non-empty sets X,Y, Z satisfy X ⊆
Y ∪Z then log |X| ≤ log (2 |Y | |Z|). To prove this, it suffices
to show that |X| ≤ 2 |Y | |Z|. That this is true follows from
|X| ≤ |Y ∪ Z| ≤ |Y |+ |Z|≤ |Y | |Z|+ |Z| |Y | = 2 |Y | |Z|. By
(2.2), we may let X = C ∩ A, Y = B ∩ A and Z = C ∩ B
and from both of the claims it follows that

∣
∣C ∩A

∣
∣ ≤ 2

∣
∣B ∩A

∣
∣
∣
∣C ∩B

∣
∣ . (2.4)

Taking the log on both sides of (2.4) and using the inequality
2 ≤ |B| (which follows from B ∈ P+

F (Ω)) we obtain

log
∣
∣C ∩A

∣
∣ ≤ 1 + log

∣
∣B ∩A

∣
∣+ log

∣
∣C ∩B

∣
∣

≤ log |B|+ log
∣
∣B ∩A

∣
∣+ log

∣
∣C ∩B

∣
∣ .

This proves (2.3).

Next, we define the information set-distance.

Definition 4. For any two finite non-empty sets A,B define
the information set-distance as

d (A,B) := max {δ (A,B) , δ (B,A)} .
In the following result we show that d satisfies the properties
of a semi-metric.

Theorem 5. The distance function d is a semi-metric on
P+

F (Ω). It satisfies the triangle inequality for any triplet
A,B,C ∈ P+

F (Ω) such that no element in the triplet is
strictly contained in any of the other two.

Proof. That the function d is symmetric is clear from
its definition. From Remark 2 it is clear that for A = B,
δ(A,B) = δ(B,A) = 0 hence d(A,B) = 0. Since δ(A,B) ≥
0 and δ(A,A) = 0 for all A,B ∈ P+

F (Ω) then we also have
d(A,B) ≥ 0 and d(A,A) = 0 for all A,B ∈ P+

F (Ω) . This
means that d is a semi-metric on P+

F (Ω). Next, we show that
it satisfies the triangle inequality for any triplet A,B,C ∈
P+

F (Ω) such that no element is strictly contained in any of
the other two. For any non-negative numbers a1, a2, a3, b1,
b2, b3, that satisfy

a1 ≤ a2 + a3

b1 ≤ b1 + b2, (2.5)

we have

max {a1, b1} ≤ max {a2 + a3, b2 + b3}
≤ max

{
max {a2, b2}+max {a3, b3} ,

max {b2, a2}+max {b3, a3}
}

= max {a2, b2}+max {a3, b3} .
From Lemma 2 it follows that (2.5) holds for the following:
a1 = δ(A,C), b1 = δ(C,A), a2 = δ(A,B), b2 = δ(B,A),
a3 = δ(B,C), b3 = δ(C,B). This yields

d(A,C) ≤ d(A,B) + d(B,C),

and hence d satisfies the triangle inequality for such a triplet.

Remark 6. One point about d that needs to be improved
in the future is the fact that even if

∣
∣B ∩A

∣
∣ and

∣
∣A ∩B

∣
∣

are kept small while |A| and |B| increase, d will increase. It
remains to be seen whether some form of normalization of
d yields a distance that still satisfies the properties listed in
Theorem 5.

3. DISTANCE BETWEEN STRINGS
Let us now define the distance between two binary strings.
In this section, we take Ω to be a set Y of objects. Denote
by X the set of all (finite) binary strings. Our approach to
defining a distance between two binary strings x, x′ ∈ X is
to relate them to subsets Yx, Yx′ ∈ P+

F (Y) and measure the
distance between the two corresponding subsets. Each string
x ∈ X is a description of a corresponding set Yx ∈ P+

F (Ω).
Define a function M : X → P+

F (Y) which dictates how a
string x yields a set M(x) := Yx ⊆ Y. In general, M may be
a many-to-one function since there may be several strings
(viewed as descriptions of the set) of different lengths for a
given set.

Definition 7. Let X×Y be all possible string-object pairs
(x, y) and let M be any function M : X→ P+

F (Y). If x, x′ ∈
X are two binary strings then the information set-distance
between them is defined as

dM (x, x′) := d(M(x),M(x′))

where the function d is defined in Definition 4.

The next result follows directly from Theorem 5.

Corollary 8. Let Y be a set of objects y and X a set of all
finite binary strings x. Let M : X→ P+

F (Y) be any function
that defines the set Yx ⊆ Y of cardinality at least 2 described

62

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

by x, for all x ∈ X. The information set-distance dM (x, x′)
is a semi-metric on X and satisfies the triangle inequality
for triplets x, x′,x′′ whose sets M(x), M(x′), M(x′′) are
not strictly contained in any of the other two.

As an example, consider a mapping M that takes binary
strings to subets of Y = {0, 1}k (the k-cube) for some given
finite k. The elements of Y are called k-words. Consider the
following scheme for associating finite strings x with sets:
given a string x, break it into non-overlapping k-words while,
if necessary, appending zeros to complete the last k-word.
Let the set M(x) = Yx be the collection of these k-words.
For instance, if x = 100100110 then with k = 4 we we obtain
the set Yx = {1001, 0011, 0000}. If a string has N > 1
repetitions of some k-word then clearly only a single copy
will be in Yx. In this respect, M eliminates redundancy in
a way that is similar to the method of [4] which gives the
minimal number of copy operations needed to reproduce a
string from a set of its substrings.

Another mapping M may be defined by scanning a fixed
window of length k across the string x and collecting each
substring (captured in the window) as an element of the
generated set Yx. For instance, suppose an alphabet has
26 letters. Hence there are 26n possible n-grams (substrings
made of n consecutive letters). If x is a document then it can
be broken into a set M(x) of n-grams. Each letter is repre-
sented by 7 bits. We collect words of length k = 7n bits and
shift by 7bits, repetitively. In this example dM measures
the distance between two documents. In comparison, the
n-gram model in the area of information retrieval [1] repre-
sents a document by a binary vector of dimensionality 26n

where the ith component is 1 if the document contains the
ith particular n-gram and is 0 otherwise. There a similarity
(opposite of distance) between two documents is represented
by the inner product of their corresponding binary vectors.

Yet another approach which does not need to choose a value
for k is to proceed along the line of work of [4]. Here we can
collect substrings of x (of possibly different lengths) accord-
ing to a repetitive procedure in order to form the set M(x)
(in [4] the cardinality of the set M(x) is referred to as the
complexity of x).

Whichever scheme M is used, to compute the information
set-distance dM (x, x′) between two finite strings x and x′ we
first determine the sets M(x) and M(x′) and then evaluate
their distance according to Definition 7 to be d(M(x),M(x′)).

References
[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Informa-

tion Retrieval. Addison-Wesley, 1999.

[2] A. N. Kolmogorov. Three approaches to the quantita-
tive definition of information. Problems of Information
Transmission, 1:1–17, 1965.

[3] J. Ratsaby. On the combinatorial representation of infor-
mation. In Danny Z. Chen and D. T. Lee, editors, The
Twelfth Annual International Computing and Combina-
torics Conference (COCOON’06), volume LNCS 4112,
pages 479–488. Springer-Verlag, 2006.

[4] J. Ziv and A. Lempel. On the complexity of finite se-
quences. IEEE Transactions on Information Theory, 22
(3):75–81, 1976.

63

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

64

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Better bounds for the bin packing problem with the
"Largest Item in the Bottom" constraint

György Dósa∗ Zsolt Tuza† Deshi Ye‡

ABSTRACT
The (online) bin packing problem with LIB constraint is
stated as follows: The items arrive one by one, and must be
packed into unit capacity bins, but a bigger item can not
be packed into a bin which already contains a smaller item.
The number of used bins is minimized as usually.

We show that the performance bound of algorithm First Fit
is not worse than 2 + 1/6 for the problem, improving the
previous best upper bound 2.5. If all items are not bigger
than 1/d, then we improve the previous best result 2 + 1/d
to 2 + 1/d(d + 2), for any d ≥ 2.

Moreover we define a problem with the generalized LIB con-
straint, where incoming items can not be packed into the
bins of some already packed items. The incompatibility of
the incoming item with some already packed items becomes
to be known only at the arrival of the actual item, and is
given by an undirected graph. We show that 3 is an upper
bound for this general problem if some natural transitivity
constraint is satisfied, but without this constraint no online
algorithm can be c-competitive with any constant c.

1. INTRODUCTION
The classical bin packing problem has been extensively stud-
ied, where the problem is to pack a set of items, whose sizes
are in (0, 1], into the minimum number of bins with capacity
1. In this paper, we consider the bin packing problem with
LIB (largest item in bottom) constraint. It is the classical
bin packing problem with the additional requirement that
in every bin larger (or longer) items must be placed below

∗Department of Mathematics, University of Pannonia,
Veszprem, Hungary, dosagy@almos.vein.hu.
†Computer and Automation Institute, Hungarian Academy
of Science, Budapest, Hungary, and Department of Com-
puter Science and Systems Engineering, University of Pan-
nonia, Hungary, tuza@sztaki.hu
‡College of Computer Science, Zhejiang University,
Hangzhou, China, yedeshi@zju.edu.cn

smaller (or shorter) items. In other words, items p1, p2, ..., pn

arrive one by one (where 0 < pi ≤ 1) and must be packed
into bins of size 1, and the total size of items packed into a
bin can not be bigger than 1 . With the additional LIB con-
straint, a later item pi can not be packed into a bin already
containing pj , if pj < pi. (If all the information regarding
the items is known in advance, then the problem is called
off-line problem. The problem is called online if the items
arrive one by one and we must make a decision upon the ar-
rival of an item without knowing any information on future
items.)

The LIB version of Bin Packing arises in the transportation
applications where it is requested to have safe and stable
packing (bigger item is not allowed to be packed on the top
of some smaller item). The classical bin packing problem
has many applications in computer science. With LIB con-
straint, the applications in computer science can be easily
extended to the applications with priority. For example, in
a multi-core system the CPU scheduler needs to assign the
task with larger priority before the smaller priority in each
core. However, each core has a fixed capacity of priority
and the question is to minimize the number of cores used
for serving all the tasks.

While applying to bin packing with LIB constraint, we de-
scribe the First Fit algorithm: FF places any incoming item
i into the first bin B into which it fits, and no item j has
already been packed into B such that pj < pi. If no such
bin exists, a new bin will be opened and item i is packed
into it.

1.1 Previous results regarding the LIB con-
straint

The bin packing problem with LIB constraint was intro-
duced by Manyem, [15]. It was shown that NF is not con-
stant approximated (algorithm NF or Next Fit at any time
keeps open only one bin, and packs the next item into the
open bin if fits, otherwise the bin is closed and the next item
is packed into a new bin), but the competitive ratio of First
Fit (FF) is at most 3. (The competitive ratio of an online
algorithm A means the maximum of ratio A(I)/OPT (I),
where OPT is an optimal offline algorithm, and I is arbi-
trary input for the problem.) Epstein [5] improved the upper
bound to 2.5, furthermore, Epstein [5] proved that the para-
metric upper bound of FF (where the size of each item is
at most 1/d) is at most 2 + 1/d, for any integer d ≥ 2. It
was also shown that the competitive ratio of any online al-

65

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

gorithm for bin packing with LIB constraint is at least 2, for
any parameter d.

1.2 Our contribution
In this paper, we revisit algorithm FF, and give a more care-
ful analysis. We show that the competitive ratio of algorithm
FF is not worse than 2 + 1/6, improving the previous best
upper bound 2.5 of Epstein [5]. Moreover, we show that the
parametric competitive ratio of FF is at most 2+1/d(d+2),
again improving the previous upper bound 2 + 1/d of [5].
Finally, we also treat the problem in a generalized version,
and prove upper and lower bounds. We do not present here
the complete proofs, they will be published in the journal
version of this paper [4].

1.3 Notation and preliminaries
Let a be any item. The bin where a is packed will be denoted
by B(a). The level of a bin B will be denoted as l(B). After
making a packing, we say that a bin Bi1 is earlier than bin
Bi2 , or Bi2 is latter than bin Bi1 , if i1 < i2 holds.

We say that items xv,xv−1, ..., x1 form a chain, if for any
1 ≤ k < v, xk+1 arrives before xk, and xk+1 < xk. Then
from the LIB constraint follows that each element of the
chain must be packed into different bins.

There are three lower bounds in the literature for the prob-
lem, namely: The total sum of the items and the length v of
any chain are natural lower bounds on OPT, as easily seen.
These lower bounds (total sum and length of longest chain)
will be denoted by LB1 and LB2, respectively. The third
lower bound [5] can be stated as follows:

Lemma 1. Let xv,xv−1, ..., x1 form a chain, x1 ≤ 1/2,
and suppose that there are u items arriving after x1, each
bigger than a half. Then LB3 = v + u is a lower bound for
the problem.

2. THE IMPROVED BOUNDS
Due to space limitation, here we can give only an outline of
the proof of the statement that FF/OPT ≤ 2+ 1

d(d+2)
holds

for all d ≥ 2.

Let us run algorithm FF, the created bins will be called as
FF-bins, furthermore we denote the number of used bins
simply by FF , while let OPT denote the optimum number
of bins in case of an offline solution. Let a be an arbitrary
item, being packed not into the first FF-bin, and let B be
an FF-bin with smaller index than B(a). Then we say that
a is not packed into bin B by overflowing, if at the moment
when item a arrives, l(B) + a > 1 holds where l(B) means
the actual level of bin B, and at this time there is no item
packed into bin B smaller than a. Furthermore, we say that
a is not packed into bin B by the LIB constraint, if there
is an item b < a, already packed into bin B, just at the
moment when item a is revealed (no matter that l(B) + a
is bigger than one or not). Now we classify the FF-bins as
follows. Let k be an arbitrary large positive integer.

Class H (bins with high level) will be the set of those bins

where the level of the bin is at least k(d+1)−1
k(d+1)

, the other bins

form Class R (remaining bins).

If there is no R-bin at all, then our results follows easily, since

then the total size of the items is at least k(d+1)−1
k(d+1)

·FF > F F

2
,

then FF/OPT ≤ 2. Thus we suppose that there exist R-
bins (at least one), then the level of each R-bin is smaller

than k(d+1)−1
k(d+1)

. Bins of these classes will be called as H-bins

and R-bins, respectively.

Next we define a special chain. Let x1 be an arbitrary item
being packed into the last R-bin. Suppose that x1, x2, ..., xk

are already defined. Then let xk+1 be last item being packed
into some R-bin B before the arrival of item xk, such that
B is the last R-bin where xk is not packed by the LIB con-
straint, if there exists such item. Let the length of the
chain be v ≥ 1; we define the chain in the reverse order
xv,xv−1, ..., x1. We call items xv,xv−1, ..., x1 as chain-items,
the bins of these items as chain-bins, let this set of bins be
Class C (chain bins). Let the class of the other R-bins be
Class M (bins of medium level). The bins of these classes
will be called as C-bins and M-bins, respectively. Then it
can be shown that the level of any M-bin is at least d

d+1
, and

we have already seen that the level of any M-bin is smaller

than k(d+1)−1
k(d+1)

.

Now we divide the M-bins into k subclasses, according to
their levels, as follows: subclass Mi is defined as the set

of M-bins having level at least (d+1)k−i

(d+1)k
but smaller than

(d+1)k−i+1
(d+1)k

, for 1 ≤ i ≤ k. Since the level of any M-bin is

at least d

d+1
, these are all the M-bins. We also classify the

chain bins, let Ci be the set of C-bins with level at least
i−1

(d+1)k
and smaller than i

(d+1)k
, for 1 ≤ i ≤ k. Since the

level of a chain-bin can be 1
d+1

or bigger, let simply C+

denote the C-bins with level at least 1
d+1

. In order to prove

FF/OPT ≤ 2 + 1
d(d+2)

, let h, ci and mi be the number of

H-bins, Ci-bins, and Mi-bins, respectively, for 1 ≤ i ≤ k
(then m1 = 0), and let c+ be the number of C+-bins. Then
we gain the next lower bounds for the optimum value:

OPT ≥
(d + 1) k − 1

(d + 1) k
h (1)

+
kX

i=1

„
i − 1

(d + 1) k
ci +

(d + 1) k − i

(d + 1) k
mi

«

+
1

d + 1
c+,

OPT ≥ c1 + c2 + ... + ck + c+ (2)

OPT ≥ c1 + ... + cj (3)

+

kX
i=j+1

(d + 1) k − i

(d + 1) k
mi,

for any 1 ≤ j ≤ k − 1.

After this treatment, we got an inequality from (1), also one
inequality from (2), and k−1 inequalities from (3). We show
in Table 1 the structure of the inequalities in case of k = 4.
The variables are described on the top of the columns in the
table, and the coefficients are written into the table.

Now we need to multiply each row by some multiplicator.

66

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Then, if the sum of the multiplied coefficients is at least 1 in
each column, we obtain the desired result. The question is:
What is the best choice of the multiplicators? We want to
ensure that after the multiplication of the rows, the sum of
the numbers in each column be at least 1, and on the other
hand, we want to keep the sum of the multiplicators as low
as possible, since this sum is an upper estimate of the ratio
FF/OPT. In case of the best choice, the coefficients are the
optimal solutions of the dual of the Linear Program which
consists of the mentioned inequalities, the nonnegativity as-
sumption of the variables, and the objective is the sum of
the variables: z = h+

Pk

i=1 (ci + mi)+ c+. We now make a
little simplification on this optimal solution, to carry out a
simplified analysis. The ”cost” of this simplification is that
the FF/OPT ratio is slightly increased, but the increased
ratio still tends to the same limit as k tends to infinity. Using
the optimal choice of the coefficients, we could not get bet-
ter upper estimate for the FF/OPT ratio, only the analysis
would be a bit harder.

c1 h c2 m2 c3 m3 c4 m4 c+

11/12 1/12 5/6 1/6 3/4 1/4 2/3 1/3
1 5/6 3/4 2/3
1 1 3/4 2/3
1 1 1 2/3
1 1 1 1 1

Table 1: the structure of the lower bounds when big
items can not occur

Here (in case d = 2 and k = 4) the chosen multiplicators
are the following: We multiply the first row by α = 6

5
, the

next three rows by β = 1
10

, and the last row by γ = 41
30

.
Then the sum of the multiplicators is α + (k − 1)β + γ =
6
5

+ 3 ·
1
10

+ 41
30

= 43
15

≈ 2.8667; generally, α = (d+1)2k

d(d+2)k−d
,

β = d+1
d(d+2)k−d

, and γ = kd2+kd−k+1
d(d+2)k−d

. Then it is easy to

check that the sum of the multiplicators (in case of d = 2)
tends to 2+ 1

d(d+2)
= 2+ 1

8
= 2.125 as k → ∞, (for k = 6 this

slightly bigger upper estimate is already α + (k − 1)β + γ =
54
46

+ 5 · 3
46

+ 31
46

= 50
23

≈ 2.173 9) and the case is the same for
any d: we slightly modify the best solution of the dual, the
sum of the multiplied rows is at least 1 in each column, and
the sum of the multiplicators tends to 2 + 1

d(d+2)
, for any

d ≥ 2.

We gain the next theorem:

Theorem 2. The parametric competitive ratio of algo-
rithm FF is not bigger than 2 + 1

d(d+2)
, for any d ≥ 2.

2.1 If items bigger than a half can occur
Now let us consider the case d = 1, i.e. there can be items
bigger than a half. Note that the previous best upper bound
is 2.5. Note, that by the previous treatment which is given
in the previous chapter for d ≥ 2, we already could have a
better upper bound, since 2 + 1

d(d+2)
= 2 + 1/3, if d = 1,

and this general proof also works for d = 1. But with a little

bit more careful analysis than that we made for cases d ≥ 2,
we can derive a better bound, namely we can show that if
items bigger than a half can occur, then FF/OPT ≤ 2+1/6
still holds. The proof is quite similar to that in the previous
section but we need one more type of lower bound (used
never before) on the optimum value.

3. THE GENERALIZED LIB CONSTRAINT
We define a constraint here, which is more general than the
(pure) LIB scenario. We still assume that the items with
sizes p1, p2, . . . arrive in a sequence revealing one item at a
time. Receiving pj we also get the list of those pi (i < j)
which cannot occur in the same bin as pj , but nothing is
known about later items. Each item must be packed into
a bin immediately when it arrives. The case can be totally
described with the help of an incompatibility graph G whose
vertices have weights representing item sizes, and two ver-
tices are adjacent if and only if the corresponding two items
cannot be packed into the same bin. In this situation we say
that (pi, pj) is an incompatible pair, or pi is incompatible
with pj (and vice versa). Also here, FF packs the next item
to the bin of smallest index where the item is not incompat-
ible with any previous item there, and does not increase the
level of the bin above 1.

Note that the incompatibility graph is known by any offline
algorithm, thus it is also known by the optimal algorithm,
to which the online algorithm is compared, but in the online
case only the already arrived part of the graph is known by
the online algorithm.

3.1 With transitivity assumption
Here we consider a subcase that we call the generalized tran-
sitive LIB constraint. It assumes for any i < j < k that if
the pairs (pi, pj) and (pj , pk) are incompatible then so is
(pi, pk), too.

Proposition 3. Under the generalized transitive LIB con-
straint, FF/OPT ≤ 3 holds for any input.

The proof can be found in the journal version [4].

3.2 Without transitivity
Here we observe that the generalized LIB constraint, with-
out any restriction make it impossible to put any constant
upper bound on competitive ratio.

Proposition 4. Under the generalized LIB constraint,
no online algorithm can be c-competitive, for any constant
c. Moreover, this fact holds true even if the incompatibility
graphs of input sequences are required to be trees, the length
n of input sequence is known in advance, and all items are
of size pi = 1/n. In particular, FF/OPT is unbounded.

The proof is based on a result of [1,9], dealing with online
coloring of trees. �

67

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

4. CONCLUSION AND OPEN QUESTIONS
We have addressed the bin packing problem with the so-
called ”LIB”constraint, where a bigger item cannot be packed
into a bin which already contains a smaller item. We showed
that the competitive ratio of the algorithm First Fit (FF)
is not worse than 2 + 1/6. Furthermore, in the paramet-
ric version of the problem, where all items are not bigger
than 1/d, we proved that the competitive ratio is at most
of 2 + 1/d(d + 2), for any d ≥ 2. The above results signifi-
cantly improve the previous upper bound 2.5 for the original
problem and 2+1/d for the parametric version, respectively
[5]. Finally, we investigated a generalized version called ”bin
packing with incompatibility graph” under the transitivity
constraint. This means that if the pairs (pi, pj) and (pj , pk)
are incompatible for some i < j < k, then so is (pi, pk),
too. We showed that in this case the competitive ratio of
algorithm FF is at most 3. There remain gaps between the
upper and lower bounds for the problem bin packing with
LIB constraint. It is worth investigating other problems of
interest, too, for example some special cases of the general
problem with conflicts but without transitivity. It remains
open for later research to discover relaxations of transitiv-
ity which still admit a constant competitive ratio. These
questions remain for further research.

5. REFERENCES
[1] D.R. Bean, Effective coloration, J. Symbolic Logic 41:2

(1976), 469–480.

[2] A. Borodin and R. El-Yaniv. Online Computation and
Competitive Analysis, Cambridge University Press,
1998.

[3] E.G. Coffman jr, M.R. Garey, and D.S. Johnson,
Approximation algorithms for bin packing: A survey,
In: Approximation algorithms for NP-hard problems,
pages 46–93, PWS Publishing Co., 1996.

[4] Gy. Dosa, Zs. Tuza, D. Ye, Bin packing with ”Largest
In Bottom” constraint: Tighter bounds and a
generalization, to appear.

[5] L. Epstein, On online bin packing with LIB
constraints, Naval Research Logistics, 56(8):780–786,
2009.

[6] L. Epstein and A. Levin, On bin packing with
conflicts, Proceedings of Workshop on Approximation
and Online Algorithms, pages 160–173, 2007.

[7] L. Epstein, A. Levin, R. Van Stee, Multi-dimensional
packing with conflicts, Fundamentals of Computation
Theory, pages 288–299, 2007.

[8] L. Finlay and P. Manyem, Online LIB problems:
Heuristics for Bin Covering and lower bounds for Bin
Packing, RAIRO Oper. Res, 39:163–183, 2005.

[9] A. Gyárfás and J. Lehel, On-line and first fit colorings
of graphs, J. Graph Theory 12(2): 217–227, 1998.

[10] K. Jansen, An approximation scheme for bin packing
with conflicts, Journal of combinatorial optimization,
3(4):363–377, 1999.

[11] K. Jansen, S. Öhring, Approximation algorithms for
time constrained scheduling, Information and
Computation, 132:85¨C108, 1997.

[12] D. Johnson, A. Demers, J. Ullman, M. Garey, and R.
Graham, Worst-case performance bounds for simple
one-dimensional packing algorithms, SIAM Journal on
Computing, 3:25–278, 1974.

[13] C. Lund and M. Yannakakis, On the hardness of
approximating minimization problem, 25th Symposium
on the Theory of Computing, pages 286–293, 1993.

[14] P. Manyem, Uniform sized bin packing and covering:
Online version, Topics in Industrial Mathematics, J.C.
Misra (Editor), Narosa Publishing House, New Delhi,
pages 447–485, 2003.

[15] P. Manyem, R. Salt, and M. Visser, Approximation
lower bounds in online LIB bin packing and covering,
Journal of Automata, Languages and Combinatorics,
8(4):663–674, 2003.

[16] B. McCloskey, and A. Shankar, Approaches to bin
packing with clique-graph conflicts, Technical Report
UCB/CSD-05-1378, EECS Department, University of
California, Berkeley, 2005.

[17] S. Seiden, On the online bin packing problem, Journal
of the ACM (JACM), 49(5):640–671, 2002.

[18] A. van Vliet, An improved lower bound for on-line bin pack-
ing algorithms, Information Processing Letters, 43(5):277–
284, 1992.

68

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Semi-on-line bin packing: an overview and an improved
lower bound

János Balogh
Department of Applied Informatics
Juhász Gyula Faculty of Education

University of Szeged
Boldogasszony sgt. 6, H-6725 Szeged, Hungary

balogh@jgypk.u-szeged.hu

József Békési
Department of Applied Informatics
Juhász Gyula Faculty of Education

University of Szeged
Boldogasszony sgt. 6, H-6725 Szeged, Hungary

bekesi@jgypk.u-szeged.hu

ABSTRACT
Here we review the main results in the area of semi-on-line
bin packing. We describe our bounds for semi-on-line bin
packing problems based on our papers. Then we present
a new lower bound for the asymptotic competitive ratio of
any on-line bin packing algorithm which knows the optimum
value in advance.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems—Computations
on discrete structures; G.2.1 [Discrete Mathematics]: Com-
binatorics—Combinatorial algorithms

General Terms
Theory

Keywords
Bin packing, semi-on-line algorithms, asymptotic competi-
tive ratio, lower bound

1. INTRODUCTION
In computer science the classical one-dimensional bin pack-
ing problem is among the most frequently studied combina-
torial optimization problems. In its traditional form a list
L = x1, x2, . . . , xn of elements (also called items) with sizes
in the interval (0, 1] and an infinite list of unit capacity bins
are given. Each element xi from the list L has to be as-
signed to a unique bin such that the sum of the sizes of the
elements in a bin does not exceed the bin capacity. The size
of an element is also denoted by xi. The bin packing problem
involves packing the items to the bins in such a way that as
few bins as possible are used.

It is well known that finding an optimal packing is NP-hard
[20]. Consequently, a large number of papers have been pub-

lished which look for polynomial time algorithms that find
feasible solutions with an acceptable approximation quality.

One class of bin packing algorithms is the so-called on-line
algorithms. An on-line algorithm packs the elements in order
of their arrival, without any knowledge of the subsequent
elements. (Neither the size nor the number of the elements
are known.) The packed elements cannot be removed. In
contrast off-line algorithms have complete information about
the list in advance, which they can take into consideration
during their operation.

The so-called semi-on-line algorithms [6, 10] lie between the
well-known on-line and off-line ones. For such algorithms,
at least one of the following operations is allowed: repacking
of some items (e.g. [19, 24]), lookahead of the next several
elements [21], or some kind of pre-ordering.

The structure of this article is the following. In Section 2
we review the results of semi-on-line bin packing, then in
Section 3 we improve the lower bound for the asymptotic
competitive ratio of any on-line (one-dimensional) algorithm
which knows the optimum value in advance. For the inter-
ested reader, we recommend [13], where a motivation of this
problem can be found as well. In the bin packing literature,
a method for packing patterns is often used to provide new
lower bounds for different on-line bin packing problems (see
e.g. [1, 16, 35]). Here we extend the method of packing pat-
terns, giving a new construction for the LP based on packing
patterns. The new construction is based on ”branching” (in-
put) list sequences.

2. DEFINITIONS AND EARLIER RESULTS
To measure the efficiency of algorithms, two general methods
are available: an investigation of the worst-case behavior or,
assuming some probability measures, a probabilistic analy-
sis. Here we will concentrate on the asymptotic worst-case
behavior of an algorithm. For a given list L, let A(L) and
OPT (L) stand for the number of bins used by algorithm
A and the number of bins used in an optimal packing, re-
spectively. Then the asymptotic competitive ratio (ACR) of
algorithm A is

R(A) := lim sup
l→∞

{

max
L

{
A(L)

l

∣
∣
∣
∣OPT (L) = l

}}

. (1)

If an algorithm has a finite ACR, and its value is less than or
equal to t, then we say that the algorithm is t-competitive.

69

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

For off-line algorithms Fernandez de la Vega and Lueker [14]
provided an APTAS (Asymptotic Polynomial Time Approx-
imation Scheme), while Karmakar and Karp [28] developed
the first AFPTAS (Asymptotic Fully Polynomial Time Ap-
proximation Scheme). In [14] for any ε > 0 an algorithm Aε

is given such that each Aε runs in polynomial time in the
length of the input list L (but exponential in 1/ε) and has
Aε(L) = (1 + ε)OPT (L) + 1. In [28], a more complex algo-
rithm is given. The running time of this depends on n and
1/ε polynomially and Aε(L) ≤ OPT (L) + log2(OPT (L))
holds for this.

The current best on-line algorithm with the best known
ACR was defined by Seiden [34] in 2002, and it is called
Harmonic++. Seiden (improving Richey’s earlier method
and analysis [34]) proved that the ACR of his algorithm is
at most 1.58889. Harmonic++ belongs to the class of Super
Harmonic algorithms defined in the same paper. For each
algorithm from this class, a lower bound of 1.58333 is valid
[32], so 1.58333 ≤ R(Harmonic++) ≤ 1.58889. Note that
the last previous actual best algorithms were Super Har-
monic [29, 32, 34] as well. For on-line algorithms the best
known lower bound is 1.5403 [1].

In this paper we will focus on semi-on-line (SOL) bin pack-
ing algorithms. The most famous algorithms based on pre-
ordering are FFD and BFD. They sort the elements in de-
creasing order and pack them using the First Fit (Best Fit)
strategy. Johnson proved in [27] that R(FFD) = R(BFD) =
11/9 = 1.22222.... More precisely, Johnson proved that for
each list L FFD(L) ≤ (11/9)OPT (L) + 4. The tight value
6/9 of the additive term was given by Dósa [11], proving
that FFD(L)≤ 11/9OPT (L) + 6/9. For on-line algorithms
running on pre-ordered lists we improved the previous lower
bound from 8/7 = 1.1428... [9] in [1] to 54/47 = 1.1489....
The first semi-on-line bin packing algorithm with repacking
was given by Galambos [15] for the case when a restricted
number of bins can be open. A bin is called closed if we
cannot pack elements into it later. This algorithm uses two
buffer bins for storing the elements temporarily. Improving
on this, Galambos and Woeginger [17] defined a semi-on-
line repacking algorithm using 3 buffer bins. Its ACR is
1.69103..., which is optimal among the algorithms with re-
stricted number of open bins.

To describe the subclasses of semi-on-line bin packing al-
gorithms, we need to introduce the role of the “scheduler”
and the “packer”. The role of the scheduler is to produce the
input list, while the role of the packer is to pack the items
(that is, to implement the packing algorithm).

In the above-mentioned problem classes, the role of the sched-
uler is trivial: to supply the elements one by one and to mark
the end of the (whole) list.

Gutin et al. introduced [22] the so-called batched bin packing
problem (BBPP) in 2005, which is a semi-on-line bin packing
problem. The classical problem is modified in such a way
that the input is split into parts (called batches) by the
scheduler. For each step the scheduler either gives a new
element, or marks the end of the current batch. Each batch
is available only after the processing of the previous one.
The algorithm has to pack each batch as an off-line one

(that is, a lookahead is possible within the current batch).
But lookahead is not allowed outside the current batch, so
each batch has to be packed in an on-line manner, where
during the packing of a new batch the elements of the earlier
packed batches cannot be moved. One batch can consist of
more elements or can be empty. If every batch has exactly
one element, then we get the classical on-line bin packing
problem as a special case. If an input consists of exactly m
batches, then we call this BBPP as m-BBPP. The ACR of
the algorithms for this problem version can be defined the
same way as before. Gutin et al. study the 2-BBPP problem
and its variants in [22] in detail. For the 2-BBPP problem,
they proved an 1.3871... lower bound here and they derived
bounds for those special cases of the 2-BBPP problem, where
the number of the different sizes of the elements of the list are
bounded from above by a given p ≥ 2 positive integer. They
proved, using the results of their paper [23], that if p = 2
then their bound is optimal. They raise an open question of
whether for different p(> 2) values their bound is optimal
or not.

There is a connection between bin packing and memory al-
location scheduling task of computer programs (jobs). The
size of a job corresponds to the size of an element, while a
memory partition corresponds to the capacity of a bin. The
most important difference is that a memory area ordered to
a job can be released after finishing the job. To model this,
a new class of bin packing algorithms can be defined; the al-
gorithms for dynamic bin packing problem (DBP), where the
scheduler can specify the arrival of an element (Insert op-
eration) or removal of a previously inserted element (Delete
operation). Each step of the input is one of these specifica-
tions, thus an input list is a finite series of Insert and Delete
operations. We should add that a removal can only be a
part of the input, i.e. the algorithm, or the packer cannot
delete an element; only the input provider (the scheduler)
can do this. The number of bins used by a dynamic bin
packing algorithm A can be defined as the maximum of the
nonempty bins used during the steps. Then the asymptotic
competitive ratio R(A) of a dynamic bin packing algorithm
A can be defined in a similar way as earlier by formula (1).
It is not hard to see that the original bin packing problem
is the special case of the dynamic problem, where the list
consists of inserts only. The dynamic bin packing problem
was defined and analyzed by Coffman, Garey and Johnson
in [7]. They gave and analyzed approximation algorithms
for the problem.

When the scheduler can apply only Insert operations (no
Delete) with repacking, Ivkovič and Lloyd proved in [26]
that for any ε > 0 there is a (1 + ε)-competitive approxi-
mation scheme A, that requires O(logn) amortized time per
Insert operation and there is a (1+ε)-competitive fully poly-
logarithmic approximation scheme A that requires O(log2 n)
amortized time per Insert operation.

For the same bin packing problem, Epstein and Levin [12]
gave an APTAS. In their model the total size of the elements
moved per step (Insert operation) is bounded by β times
the size of the arriving element. Their Algorithm Dynamic
APTAS uses at most (1 + ε)OPT (L) + 1 bins.

A special case of the dynamic bin packing problem is the so-

70

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

called fully dynamic bin packing (FDBP, [24, 25]) problem.
The difference between this and dynamic bin packing prob-
lem is that the packer is allowed to perform repacking as well.
If the repacking is restricted, i.e. for each step the packer can
repack at most c items, then it is called c-repacking fully dy-
namic bin packing problem (c-repacking FDBP). Here c is a
fixed positive integer. Obviously, the case c = 0 is simply
the pure on-line bin packing problem.

The classical on-line bin packing can also be relaxed by al-
lowing the repacking of at most c elements for each step.
This version of the problem is called c-repacking semi-on-line
bin packing (c-repacking SOL). Obviously, the case c = 0
again gives the pure on-line bin packing problem.

Many years after Galambos’s first paper on repacking al-
gorithms, Gambosi et al. [18, 19] returned to the analy-
sis of certain semi-on-line algorithms. Their algorithm used
repacking, but the application and the cost of the algorithm
was defined in a special way. Their method packs the large
elements one by one, while it composes bundles (groups) of
the small items. Then one group is moved in one step, and
this kind of movement counts as 1-repacking. In this sense
these algorithms may move even O(n) items in one step. In
paper [19] the authors analyzed two algorithms. The faster,
linear time algorithm A1 has an ACR of 3/2, while the other
algorithm A2 with O(n log n) running time has an ACR of
4/3.

Ivkovič and Lloyd investigated the FDBP problem. Their
algorithm, similar to the technique presented in [19], uses
the bundle technique for the small items. Its ACR was 5/4
[25].

Up to the last decade no lower bounds were given for the ef-
ficiency of the semi-on-line algorithms. The first paper from
this point of view was published by Ivkovič and Lloyd in
1996 [24]. They proved that there is no c-repacking FDBP
algorithm which has a better asymptotic competitive ratio
than 4/3. With a small modification the construction can
be applied for the c-repacking SOL problem as well. This
means that the lower bound 4/3 becomes valid for this prob-
lem, as was mentioned in [10] by Csirik andWoeginger. Note
that the bound of 4/3 is valid for both problems for any c.

2.1 Our earlier results
In [3], we improved the best-known lower bound from 1.3333
[24] to 1.3871 for the c-repacking semi-on-line problem. We
presented our proof for the c-repacking SOL problem, and
we showed that it remains valid for the c-repacking FDBP
problem as well. The results obtained are valid for any c. We
proved the lower bound by analyzing and solving a specific
optimization problem. For the analysis of the construction
we used different methods: LP-techniques were combined
with results from linear algebra, and then we solved and
analyzed a special non-linear optimization problem. We ex-
pressed the exact value of the lower bound in terms of the
Lambert W function. Note that our construction is a gen-
eralization of the constructions described in [22] and [24].

We proved some lower bound results for the special case of
the problem as well. In [2] we focused on the special case
of the problem, where there is another condition: the maxi-

mal number of the different elements is restricted by a given
p(p ≥ 2) constant. The lower bounds are valid for the spe-
cial cases of both above-mentioned semi-on-line problems.
Furthermore, they are valid for the 2-BBPP problem de-
fined in [22]. The bounds improve the lower bounds for the
case p ≥ 3 given in [22] (and they are valid for both the
c-repacking and classical versions of the problem). Hence
we answered the open question in [22] for the 2-batched bin
packing problem, allowing at most p different item sizes.
In [2] we proved that our construction can improve these
bounds, giving a negative answer for their optimality. The
construction works for specific p (p > 2), and the lower
bounds are valid for the above two problems, the c-repacking
SOL problem and the c-repacking FDBP.

In [4] we proved that although our bounds are given in one
dimension, the above-mentioned lower bounds are valid for
every d-dimension (d ≥ 1) for multidimensional (geomet-
ric) semi-on-line bin packing problems. To the best of our
knowledge this is the first multidimensional semi-on-line bin
packing result. The lower bound construction is given by
hypercubes and so it is valid for the classical d-dimensional
on-line hypercube packing problem, even when repacking is
not allowed. The bound improves the lower bound of 4/3
([8]), which was the best known lower bound for cases d ≥ 4.

The interesting aspect of the lower bounds presented in [2]
and [3] is that although the problem is clearly discrete, the
solution requires that one solve specific nonlinear (continu-
ous) optimization problems. To do this, we applied global
optimization methods. So the construction furnished a nice
connection between combinatorial and global optimization.
In [2], we solved the nonlinear optimization problem by a
reliable Branch and Bound method based on interval arith-
metic [30, 31]. Reliability means that the proof is produced
by a computer, but the results are checked and the inaccu-
racy arising from rounding errors is eliminated.

In another paper [5], we improved our previous results and
gave new upper bounds for the c-repacking SOL problem.
We analyzed our algorithm using classical methods (like the
weighting function technique). We gave a series of algorithms
HFR-c for any positive integer value c. We proved that if c
goes to infinity, then R(HFR-c) goes to 3/2. More precisely,
we proved that the ACR for a given c is not larger than
3/2+ bc/(1− bc), where bc is in the interval (0, 1/(6c)]. The
given upper bounds show that repacking really can help.
To demonstrate this we state some cases of these. In the
case of c = 1, the result of our algorithm is irrelevant from
the point of view that the best on-line algorithm is more
competitive [34]. However, our 1-repacking algorithm uses
far fewer bin classes. The ACR of our algorithm HFR-2 for
the case of c = 2 is smaller or equal to 1.5728..., which is
less than the best known ACR for on-line algorithms [34].
Another interesting aspect of the case c = 2 is that the
given ACR is smaller than the lower bound 1.58333 proved
for Harmonic Fit type on-line algorithms [32]. The same
holds for our algorithm HFR-3 in the case c = 3: R(HFR-
3) ≤ 1.5507.... Another important issue is that for the case
of c = 4 our algorithm has a better ACR than the best lower
bound for on-line algorithms [1]. This means that it is more
competitive than any pure on-line algorithm. Of course, this
is due to the semi-on-line property, which permits repacking.

71

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

This shows us that it is worth investigating such algorithms.

Many open issues remain, of which we shall mention three.
The first is to give a 1-repacking algorithm with an ACR
better than 1.58333. The second is to provide a semi-on-line
c-repacking algorithm with an ACR better than 1.5403 —
for c < 4. The third is to improve the lower bounds for small
c values (c = 1, 2).

3. IMPROVED LOWER BOUND FOR A SEMI-
ON-LINE PROBLEM

Epstein and Levin considered a subtask in [13], when the on-
line bin packing algorithm knows the value of the optimum
in advance. In their paper they proved a lower bound of
1.30556. Here we raise this lower bound to 1.32312.

The packing pattern technique is described in the literature
of bin packing ([1, 16, 35]). It is generally used in the lower
bound constructions for bin packing problems. The set of
packing patterns of a given sequence of items can be found.
Based on this set, an LP can be constructed and the opti-
mum value of the LP is found for the lower bound of the
sequence.

We extend this LP-method in an adaptive way to the so-
called “branching” list sequences. The purpose of this ex-
tension is to get an automatic method for constructing the
LP in a new way, so we provide a technique for computing
the lower bound for these kind of lists. Similar to the case of
on-line bin packing algorithms, each list sequence contains a
finite number of different lists. The lower bound will be the
optimum value of the constructed LP. And like the on-line
case it always exists.

As far as we know there is no known similar extension of
the LP-method. In their construction, Epstein and Levin
[13] used this branching list technique, but their result was
proved using combinatorial methods. We think that our new
method can result in new lower bounds for many different
bin packing problems. As a by-product, we slightly improve
the lower bound given in [13] for the bin packing problem
with conflicts for interval graphs. The latter fact follows from
a result presented in [13].

3.1 Packing patterns for branching lists and
the construction of the LP

Let us consider r different list sequences. Denote these by
L1, . . . , Lr, respectively. Let Li be the concatenation of ni

number of lists, i.e. Li = Li,1 . . . Li,ni (i = 1, . . . , r). Let
Li,j also be a concatenation of ni,j = ci,jn elements such a
way that each element of Li,j has the same size. Denote this
size by si,j (ci,j > 0 and let 0 < si,j ≤ 1 be real numbers and
j = 1, . . . , ni, i = 1, . . . , r are integers). Denote the optimum
values of the list sequences by OPT (L1), . . . ,OPT (Lr), re-
spectively. In our construction all the optimum values will
be equal, whose value will be denoted by N∗.

Let us suppose that a one-dimensional deterministic on-line
bin packing algorithm A is executed on the lists L1, . . . , Lr.
The value of N∗ is known by A in advance. As a first step we
will find the bin types which can be used by the algorithm.
Next, we are interested in finding the number of bins of each

bin type.

The packing patterns describe how the items of a list se-
quence Li (i = 1, . . . , r) are distributed among the bins.
The set of packing patterns for a fixed list Li is denoted by
P i (i = 1, . . . , r). The elements of P i are ni-dimensional
vectors. Each pi = (pi,1, . . . , pi,ni) is a non-negative integer
vector, for which pi,1si,1 + . . . + pi,nisi,ni ≤ 1 holds. Here
we also define a class of a packing pattern pi ∈ P i: class(pi)
as the smallest j for which pi,j �= 0 in pi.

Our procedure is the following:

1. First for each list sequence Li, we will construct equa-
tions for the number of elements in the packing. Each
such equation describes all the elements of Li,j can be
found in the packing. (Each element is anywhere in a
bin of the packing.) For each sublist Li,j we have one
equation of the form

∑

pi∈P i

pi,jn(pi) = ni,j , j = 1, . . . , ni, i = 1, . . . , r,

where n(pi) is the number of bins used by the algo-
rithm A while packing the elements of the sublist Li.

Thus for each list Li we have ni equations, which
means that the total number of such constraints is
n1 + . . .+ nr.

2. Algorithm A packs each list Li, i = 1, . . . , r, so, for
R(A)

R(A) ≥ lim sup
n→∞

A(Li)

OPT (Li)

holds. It produces one constraint for each list Li, giving
additional r inequalities. We note that there is a differ-
ence here compared to the classical on-line algorithms,
because we do not add these inequalities for the real
sublists of a list Li (i.e. for the lists Li,1, . . . Li,t of a
list Li, if t < ni). This arises from the nature of the
problem (since it is the case of the known optimum
value).

It means that
∑

pi∈P i

n(pi) ≤ R(A)OPT (Li), i = 1, . . . r.

Substituting the previous expression into OPT (Li), we
get that

∑

pi∈P i

n(pi) ≤ R(A)N∗, i = 1, . . . , r,

where the values of n(pi)-s are non-negative integers.

3. To obtain good lower bounds we have to find some
connections among the lists. From this reason we con-
sider a kind of sequences that can have common prefix
lists. We call these kinds of lists branching lists. A
branching list can be represented by a tree, which can
be constructed based on the common prefix portions
of the different lists.

Let us now ask the following question of how these
connections can appear in the constraints of the LP,
which is assigned to the list construction.

72

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Consider all pairs Li, Lj of the lists (1 ≤ i < j ≤ 1).
For every such pair we consider the largest index k,
for which Li,1 = Lj,1, . . . , Li,k = Lj,k holds, It means
that if Li = Li,1 . . . Li,kLi,k+1 . . . Li,ni , then Lj can be
written in the form Lj = Li,1 . . . Li,k Lj,k+1 . . . Lj,nj ,
where Li,k+1 �= Lj,k+1. (at most one of the lists Li,k+1

and Lj,k+1 can even be empty).

The LP contains additional constraints (equations) for
every such i, j pair of indices. More precisely, the num-
ber of these additional equations for a given pair i, j
is equal to the number of different packing patterns
containing an element of the common prefix sublist
Li,1 . . . Li,k. The set P i,k of these packing patterns
contains vectors of dimension ni. This is the subset of
P i that contains the kind of elements of P i containing
an element of the first k sublist of Li. Therefore

P i,k = {pi | class(pi) ≤ k},

where, of course, P i = P i,ni ,

∑

pi∈P i,k,pi=(pi,1,...,pi,k,pi,k+1,...,pi,ni
)

n(pi)

=
∑

pj∈P j,k,pj=(pi,1,...,pi,k,pj,k+1,...,pj,nj
)

n(pj),

for all packing patterns pi ∈ Pi,k, 0 ≤ i < j ≤ 1, where
n(pi) and n(pj) are the number of bins of type pi and
pj used by the algorithm in the packing of the lists
Li and Lj , respectively. Each equation expresses the
equality of the number of bins packed using packing
patterns pi ∈ P i,k and pj ∈ P j,k, where the first k
values are the same, i.e.

pi = (pi,1, . . . , pi,k, pi,k+1, . . . , pi,ni),

pj = (pi,1, . . . , pi,k, pj,k+1, . . . , pj,nj),

where

pj,1 = pi,1, . . . , pj,k = pi,k.

We note that the number of this kind of constrains
may be large.

4. Next, we will consider an algorithm A which gives a
minimum value of R(A) subject to all of the above
constraints. Our aim is to compute the value

R = min
A

max
i=1,...,k

lim sup
n→∞

A(Li)

OPT (Li)
.

This value will be a lower bound for the ACR of any
on-line algorithm.

Summarizing the previous constraints, the LP can be given
in the following form:

min R, (2)

subject to
∑

pi∈P i

pi,jn(pi) = ni,j , j = 1, . . . , ni, i = 1, . . . , r, (3)

R ≥ A(Li)

OPT (Li)
=

∑

pi∈P i

n(pi)

N∗ , i = 1, . . . , r, (4)

∑

pi∈P i,k,pi=(pi,1,...,pi,k,pi,k+1,...,pi,ni
)

n(pi)

=
∑

pj∈P j,k,pj=(pi,1,...,pi,k,pj,k+1,...,pj,nj
)

n(pj),

∀pi ∈ Pi,k, 0 ≤ i < j ≤ 1. (5)

This is a mixed integer programming problem, which is solv-
able.

3.2 The list construction
After these preliminaries we are ready to present an im-
proved lower bound for the bin packing problem with known
optimum. Consider the following branching list construction:

L1 = L1,1, L1,2, where
L1,1 contains n items, each with size 1

40
− 4ε, L1,2 contains

39
40
n items with size 1,

L2 = L2,1, L2,2, L2,3, where
L2,1 contains n items of size 1

40
− 4ε, L2,2 contains n items

of size 1
40

+ ε, L2,3 contains 19
20
n items of size 1,

L3 = L3,1, L3,2, L3,3, L3,4, where
L3,1: n items of size 1

40
− 4ε, L3,2: n items of size 1

40
+ ε,

L3,2: n items of size 1
5
+ ε, L4,3:

3
4
n items of size 1,

L4 = L4,1, L4,2, L4,3, L4,4, L4,5, where
L4,1: n items of size 1

40
− 4ε, L4,2: n items of size 1

40
+ ε,

L4,3: n items of size 1
5
+ ε, L4,4: n items of size 1

4
+ ε, L4,5:

1
2
n items of size 1.

L5 = L5,1, L5,2, L5,3, L5,4, L5,5, where
L5,1: n items of size 1

40
− 4ε, L5,2: n items of size 1

40
+ ε,

L5,3: n items of size 1
5
+ ε, L5,4: n items of size 1

4
+ ε, L5,5:

n items of size 1
2
.

It can be seen that after the common portions the lists are
filled with padding items 1 to attain the common optimum
value. It is not hard to see that for the optimum values
OPT (L1) = . . . = OPT (L5) = N∗ = n holds, so this value
can be given for the algorithm in advance. Constructing
and solving the LP (2)-(5) leads to optimum value of 1.3231.
This means that for the ACR of any on-line algorithms with
known optimum value we have a lower bound of 1.3231. This
raises the earlier bound of 1.30556 of Epstein and Levin
for this problem. It provides a new lower bound for the
competitive ratio of any on-line algorithm for the bin packing
with conflicts problem on interval graphs. For the latter
problem the lower bound 4.30556 is raised to 4.3231.

4. SUMMARY
Here we provided an overview of known semi-on-line bin
packing results and presented a new lower bound for those

73

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

on-line bin packing problem where the algorithm knows the
value of the optimum in advance. We introduced the con-
cept of branching input lists and we gave a new method for
constructing the LP. It can be generally used to give lower
bounds for bin packing algorithms based on the method of
packing patterns. We extended the LP method to the so-
called branching lists and of course we hope that this type
of construction can be applied to other problems as well.

5. REFERENCES
[1] J. Balogh, J. Békési, and G. Galambos. New lower

bounds for certain bin packing algorithms. In WAOA
2010, LNCS 6534, 25–36, 2011.

[2] J. Balogh, J. Békési, G. Galambos, and M.C. Markót.
Improved lower bounds for semi-on-line bin packing
problems. Computing, 84:139–148, 2009.

[3] J. Balogh, J. Békési, G. Galambos, and G. Reinelt.
Lower bound for bin packing problem with restricted
repacking. SIAM Journal on Computing, 38:398–410,
2008.

[4] J. Balogh, J. Békési, G. Galambos, and G. Reinelt. On
a multidimensional semi-online bin packing problem.
In Proceedings for ICAI 2010 - 8th International
Conference on Applied Informatics, in print, 2011.

[5] J. Balogh, J. Békési, G. Galambos, and G. Reinelt.
On-line bin packing with restricted repacking.
manuscipt, 2011.

[6] E.G. Coffman, G. Galambos, S. Martello, and D.
Vigo. Bin packing approximation algorithms:
Combinatorial analysis. In Handbook of Combinatorial
Optimization Supplement Volume, Kluwer Academic
Publishers, 151–208, 1999.

[7] E.G. Coffmann, M.R. Garey, and D.S. Johnson.
Dynamic bin packing. SIAM Journal on Computing,
12:227–260, 1983.

[8] D. Coppersmith and P. Raghavan. Multidimensional
on-line bin packing: Algorithms and worst-case
analysis. Operations Research Letters, 8:17–20, 1989.

[9] J. Csirik, G. Galambos, and Gy. Turán. Some results
on bin packing. In Proceedings of EURO VI., Vienna,
1983.

[10] J. Csirik and G.J. Woeginger. On-line packing and
covering problems. In: On-line algorithms. Lecture
Notes in Computer Science, Vol. 1442, Berlin,
147–177, 1998.

[11] G. Dósa. The Tight Bound of First Fit Decreasing
Bin-Packing Algorithm Is FFD(I) <= 11/9OPT (I)
+6/9. In Proc. ESCAPE, 1–11, 2007.

[12] L. Epstein and A. Levin. A robust APTAS for the
classical bin packing problem. Mathematical
Programming, 119:33–49, 2009.

[13] L. Epstein and A. Levin. On bin packing with
conflicts. SIAM Journal on Optimization,
19:1270–1298, 2008.

[14] W. Fernandez de la Vega and G.S. Lueker. Bin
packing can be solved within 1 + ε in linear time.
Combinatorica, 1:349–355, 1981.

[15] G. Galambos. A new heurisic for the classical bin
packing problem. Technical Report 82. Institute für
Mathematik, Augsburg, 1985.

[16] G. Galambos and A van Vliet. Lower bounds for 1-, 2-

and 3-dimensional on-line bin packing algorithms.
Computing, 52:281–297, 1994.

[17] G. Galambos and G.J. Woeginger. Repacking helps in
bounded space on-line bin packing, Computing,
49:329–338, 1993.

[18] G. Gambosi, A. Postiglione, and M. Talamo. New
algorithms for on-line bin packing. In Algorithms and
Complexity, Proceedings of the First Italian
Conference, World Scientific, Singapore, 44–59, 1990.

[19] G. Gambosi, A. Postiglione, and M. Talamo.
Algorithms for the relaxed on-line bin-packing model.
SIAM Journal on Computing, 30:1532–1551, 2000.

[20] M.R. Garey and D.S. Johnson. Computers and
Intractability (A Guide to the theory of
NP-Completeness), W.H. Freeman and Company, San
Francisco, 1979.

[21] E.F. Grove. On-line bin packing with lookahead. In
Proc. SODA, 430–436, 1995.

[22] G. Gutin, T. Jensen, and A. Yeo. Batched bin
packing. Discrete Optimization, 2:71–82, 2005.

[23] G. Gutin, T. Jensen, and A. Yeo. Optimal on-line bin
packing with two item sizes. Algorithmic Operations
Research, 1:72–78, 2006.

[24] Z. Ivkovič and E.L. Lloyd. A fundamental restriction
on fully dynamic maintenance of bin packing.
Information Processing Letters, 59:229–232, 1996.

[25] Z. Ivkovič and E.L. Lloyd. Fully dynamic algorithms
for bin packing: being (mostly) myopic helps. SIAM
Journal on Computing, 28:574–611, 1998.

[26] Z. Ivkovič and E. Lloyd. Partially dynamic bin
packing can be solved within 1 + ε in (amortized)
polylogarithmic time. Information Processing Letters,
63:45–50, 1997.

[27] D.S. Johnson. Near-optimal bin packing algorithms.
PhD thesis. MIT, Cambridge, MA, 1973.

[28] N. Karmarkar and R. Karp. An efficient
approximation scheme for the one-dimensional bin
packing problem. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science
(FOCS’82), 312–320, 1982.

[29] C.C. and D.T. Lee. A simple on-line bin packing
algorithm. Journal of the ACM, 32:562–572, 1985.

[30] M.C. Markót and T. Csendes. A new verified
optimization technique for the “packing circles in a
unit square” problems. SIAM Journal on
Optimization, 16:193–219, 2005.

[31] M.C. Markót, T. Csendes, and A.E. Csallner.
Multisection in interval branch-and-bound methods
for global optimization. II. Numerical tests, Journal of
Global Optimization, 16:219–228, 2000.

[32] P. Ramanan, D.J. Brown, C.C. Lee, and D.T. Lee.
On-line bin packing in linear time. Journal of
Algorithms, 10:305–326, 1989.

[33] M.B. Richey. Improved bounds for harmonic-based bin
packing algorithms. Discrete Applied Mathematics,
34:203–227, 1991.

[34] S.S. Seiden. On the on-line bin packing problem.
Journal of the ACM, 49:640–671, 2002.

[35] A. van Vliet. An improved lower bound for on-line bin
packing algorithms. Information Processing Letters,
43:277–284, 1992.

74

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Determining the expected runtime of an exact graph
coloring algorithm

Zoltán Ádám Mann
Budapest University of Technology and

Economics
Department of Computer Science and

Information Theory
Magyar tudósok körútja 2., 1117 Budapest,

Hungary
zoltan.mann@cs.bme.hu

Anikó Szajkó
Budapest University of Technology and

Economics
Department of Computer Science and

Information Theory
Magyar tudósok körútja 2., 1117 Budapest,

Hungary
szajko.aniko@gmail.com

ABSTRACT
Exact algorithms for graph coloring tend to have high vari-
ance in their runtime, posing a significant obstacle to their
practical application. The problem could be mitigated by
appropriate prediction of the runtime. For this purpose, we
devise an algorithm to efficiently compute the expected run-
time of an exact graph coloring algorithm as a function of the
parameters of the problem instance: the graph’s size, edge
density, and the number of available colors. Specifically, we
investigate the complexity of a typical backtracking algo-
rithm for coloring random graphs with k colors. Using the
expected size of the search tree as the measure of complex-
ity, we devise a polynomial-time algorithm for predicting
algorithm complexity depending on the parameters of the
problem instance. Our method also delivers the expected
number of solutions (i.e., number of valid colorings) of the
given problem instance, which can help us decide whether
the given problem instance is likely to be feasible or not.
Based on our algorithm, we also show in accordance with
previous results that increasing the number of vertices of the
graph does not increase the complexity beyond some com-
plexity limit. However, this complexity limit grows rapidly
when the number of colors increases.

1. INTRODUCTION AND PREVIOUS
WORK

Graph coloring1 is one of the most fundamental problems in
algorithmic graph theory, with many practical applications,
such as register allocation, frequency assignment, pattern
matching, and scheduling [22, 6, 19]. Unfortunately, graph
coloring is NP -complete [11]. Moreover, if P �= NP , then no
polynomial-time approximation algorithm with an approxi-
mation factor smaller than 2 can exist for graph coloring [10].

1See Section 2 for detailed definitions.

Exact graph coloring algorithms are often variants of the
usual backtrack algorithm. The backtrack algorithm has the
advantage that, by pruning large parts of the search tree, it
can be significantly more efficient than checking the whole
search space exhaustively. In the worst case, the backtrack
algorithm requires an exponential number of steps, but its
average-case complexity is O(1) [27]. The runtime can vary
significantly: both very short and very long runs have non-
negligible probability [16].

The probabilistic analysis of the coloring of random graphs
was first suggested in the seminal paper of Erdős and Rényi
[9]. Subsequent work of Grimmett and McDiarmid [13], Bol-
lobás [4], and Luczak [17], lead to an understanding of the
order of magnitude of the expected chromatic number of
random graphs. Through the recent work of Shamir and
Spencer [24], Luczak [18], Alon and Krivelevich [2], and
Achlioptas and Naor [1], we can determine almost exactly
the expected chromatic number of a random graph in the
limit: with probability tending to 1 when the size of the
graph tends to infinity, the expected chromatic number of a
random graph is one of two possible values.

In terms of the running time of the backtracking algorithm
on random graphs, much less is known. Bender and Wilf
gave lower and upper bounds on the runtime of backtrack-
ing in the non-k-colorable case [3]. Asymptotically, these
bounds are quite good, but in practical cases, there can
be several orders of magnitude difference between the lower
and upper bounds. In a recent paper, we improved these
bounds [20], but there still exists a range of the input pa-
rameters, in which there is a non-negligible gap between
the lower and upper bounds (see Figure 1, and note also
the exponential scale on the vertical axis). Hence, accurate
prediction of the algorithm’s runtime is still only partially
possible.

Predicting the runtime of the algorithm would greatly im-
prove its practical usability, by informing the user in ad-
vance about the estimated runtime. This would let the user
decide if the exact solution of the problem is realistic in
the available time frame, or a heuristic solution should be
used instead. More generally, it allows the manual or auto-
mated selection of the most suitable algorithm from an al-
gorithm portfolio [12]. It also enhances load balancing when

75

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

10
20

10
22

edge probability: p

ex
pe

ct
ed

 tr
ee

si
ze

Bender−Wilf upper bound
best upper bound
best lower bound
Bender−Wilf lower bound

Figure 1: Lower and upper bounds on algorithm runtime of Bender and Wilf [3] and the best known bounds

from our recent paper [20]

several problem instances are solved in parallel on multiple
machines.

Empirical study of the behaviour of search algorithms and
the complexity of graph coloring problem instances has lead
to the discovery of a phase transition phenomenon with an
accompanying easy-hard-easy pattern [7, 15, 14, 8]. Briefly,
this means that, given k colors, for small values of the edge
density (underconstrained case), almost all random graphs
are colorable. When the edge density of the graph increases,
the ratio of k-colorable graphs abruptly drops from almost 1
to almost 0 (phase transition). After this critical region, al-
most all graphs are non-k-colorable (overconstrained case).
In the underconstrained case, coloring is easy: even the sim-
plest heuristics usually find a proper coloring [26, 5]. In
the overconstrained case, it is easy for backtracking algo-
rithms to prove uncolorability because they quickly reach
contradiction [23]. The hardest instances lie in the criti-
cal region [7]. This phenomenon is exemplified in Figure 2,
showing our own empirical findings, experimenting with a
backtrack graph coloring algorithm [21].

Summarizing these results, one can state that we have a
good quantitative understanding of graph coloring in the
limit (when the size of the graph tends to infinity) and a
good qualitative understanding of it in the finite case. Our
aim in this paper is to study the hardness of graph coloring
quantitatively with accurate results for finite graphs.

Hence, our aim is to devise an algorithm for obtaining ac-

curate results on the expected runtime of the backtrack al-
gorithm in coloring random graphs. Like [3] and [20], we
restrict ourselves to the non-k-colorable case (see Section
2). More specifically, our complexity results are accurate in
the non-k-colorable case, but only an upper bound in the
k-colorable case. To use a machine independent measure of
algorithm complexity, we analyze the expected size of the
search tree as a function of problem instance paramteres:
the size of the graph, the edge density and the number of
available colors (Section 3). Our contribution is an algo-
rithm for determining the expected size of the search tree
exactly (Section 4). The algorithm uses dynamic program-
ming, and its runtime is polynomial in the size of the graph.
As a by-product, we also obtain the exact value of the ex-
pected number of solutions as a function of input parameters
(Section 5). We also present our empirical findings on how
the complexity of the problem and the number of solutions
depend on the input parameters (Section 6). Finally, Section
7 concludes the paper.

2. PRELIMINARIES
We consider the decision version of the graph coloring prob-
lem, in which the input consists of an undirected graph
G = (V,E) and a number k, and the task is to decide
whether the vertices of G can be colored with k colors such
that adjacent vertices are not assigned the same color. The
input graph is a random graph from Gn,p, i.e. it has n ver-
tices and each pair of vertices is connected by an edge with
probability p independently from each other. The vertices
of the graph will be denoted by v1, . . . , vn, the colors by

76

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,0
1

0,0
6

0,1
1

0,1
6

0,2
1

0,2
6

0,3
1

0,3
6

0,4
1

0,4
6

0,5
1

0,5
6

0,6
1

0,6
6

0,7
1

0,7
6

0,8
1

0,8
6

0,9
1

0,9
6

p : edge probability

S
ol

va
bi

lit
y

0

50000

100000

150000

200000

250000

300000

B
ac

kt
ra

ck
s

Solvability

Backtracks

Figure 2: The runtime complexity of a backtrack algorithm (right y-axis: number of backtracks) and the

ratio of feasible problem instances (left y-axis: solvability) in the coloring of Gn,p random graphs for n = 70,
as a function of the edge probability (p). The number of colors is k = 8.

1, . . . , k. A coloring assigns a color to each vertex; a partial
coloring assigns a color to some of the vertices. A (partial)
coloring is invalid if there is a pair of adjacent vertices with
the same color, otherwise the (partial) coloring is valid.

The backtrack algorithm considers partial colorings. It starts
with the empty partial coloring, in which no vertex has color.
This is the root – that is, the single node on level 0 – of the
search tree2. Level t of the search tree contains the kt possi-
ble partial colorings of v1, . . . , vt. The search tree, denoted
by T , has n+ 1 levels (0, 1, . . . , n), the last level containing
the kn colorings of the graph. For simplicity of notation, we
use w ∈ T to denote that the partial coloring w is a node of
the search tree. Furthermore, let Tt denote the set of par-
tial colorings on level t of T . If t < n and w ∈ Tt, then w

has k children in the search tree: those partial colorings of
v1, . . . , vt+1 that assign to the first t vertices the same colors
as w.

A node w ∈ Tt is a partial coloring, i.e. it can also be
regarded as a function w : {v1, v2, . . . vt} → {1, 2, . . . , k}.
That is, for w ∈ Tt and v ∈ {v1, v2, . . . vt}, w(v) denotes the
color of vertex v in the partial coloring w. In other cases,
i.e. when t < i ≤ n, then w(vi) is undefined as w assigns no
color to vi.

2In order to avoid misunderstandings, we use the term ‘ver-
tex’ in the case of the input graph and the term ‘node’ in
the case of the search tree.

In each partial coloring w, the backtrack algorithm considers
the children of w and visits only those that are valid. Invalid
children are not visited, and this way, the whole subtree
under an invalid child of the current node is pruned. This is
correct because all nodes in such a subtree are also certainly
invalid.

T depends only on n and k, not on the specific input graph.
However, the algorithm visits only a subset of the nodes
of T , depending on which vertices of G are actually con-
nected. The number of actually visited nodes of T will be
used to measure the complexity of the algorithm on the given
problem instance. Moreover, the number of actually visited
nodes on the nth level of T yields the number of solutions.

Of course, this is a simplified algorithm model. In practice,
a backtracking graph coloring algorithm can be enhanced
with several techniques, e.g. heuristics for the choice of the
next vertex to color and the order in which the colors should
be considered, symmetry breaking, consistency propagation
etc. [25]. Nevertheless, this simplified model captures well
the main phenomena of any backtracking-style algorithm
(i.e., branching as well as pruning invalid subtrees of the
search tree), especially in the non-k-colorable case. This is
because in the non-k-colorable case, the search space to be
traversed is to a large extent given, and the algorithm must
traverse all of it (except for the pruned subtrees of the search
tree). In the k-colorable case, the ideas mentioned above for
speeding up the algorithm can be leveraged more intensively.

77

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

E.g., with lucky choices of the vertices to color and the col-
ors to assign to them, the algorithm might manage to color
the graph with a very small amount of – or even zero – back-
tracking. In contrast, in the non-k-colorable case, the order
in which the colors to assign to a given vertex are tried does
not matter because all of them have to be tried anyway.
Therefore, our model is realistic in the non-k-colorable case;
in the k-colorable case, our complexity results can be seen
as upper bounds on real algorithm complexity.

3. THE EXPECTED NUMBER OF VISITED
NODES OF THE SEARCH TREE

For each w ∈ T , we define the following random variable
(the value of which depends on the choice of G):

Yw =

{
1 if w is valid,

0 else.

Let pw = Pr(Yw = 1). Moreover, we define one more ran-
dom variable (whose value also depends on the choice of G):
Y = the number of visited nodes of T .

Since the algorithm visits exactly the valid partial colorings,
it follows that Y =

∑
w∈T

Yw, and thusE(Y) =
∑

w∈T
E(Yw).

Moreover, it is clear that E(Yw) = pw. It follows that the
expected number of visited nodes in T is:

E(Y) =
∑

w∈T

pw.

For w ∈ Tt, let

Q(w) :=
{
{x, y} : x, y ∈ {v1, . . . , vt}, x �= y,w(x) = w(y)

}

be the set of pairs of vertices with identical colors, and let
q(w) := |Q(w)|. Clearly, w is valid if and only if, for all
{x, y} ∈ Q(w), x and y are not adjacent. It follows that

pw = (1 − p)q(w) and thus the expected number of visited
nodes of T is:

E(Y) =
∑

w∈T

(1− p)q(w)
.

Note that computing E(Y) directly through this formula is
not tractable since |T | is exponentially large in n. In the
following, we devise a way to overcome this hurdle by a
smart grouping of the terms of this sum.

4. EFFICIENT CALCULATION USING DY-
NAMIC PROGRAMMING

Before presenting our algorithm, we need to introduce some
further notions. Our first aim is to compute the maximum
possible value of q(w) within Tt.

We denote by s(w, i) (or simply si if it is clear which partial
coloring is considered) the number of vertices of G that are
assigned color i in the partial coloring w.

Proposition 1. For all w ∈ Tt, q(w) ≤
(
t

2

)
.

Proof.

q(w) =

k∑

i=1

(
si

2

)

=
1

2

(
k∑

i=1

s
2
i −

k∑

i=1

si

)

≤

≤
1

2

⎛

⎝

(
k∑

i=1

si

)2

−
k∑

i=1

si

⎞

⎠ =
1

2

(
t
2 − t

)
=

(
t

2

)

.

We will denote this value as qmax(t) or simply qmax. It is
also possible to derive a formula for the minimum of q(w)
[20], depending on the value of t and k. This value will be
denoted by qmin(t, k) or simply qmin. The exact formula for
qmin(t, k) is not necessary for our purposes.

Let R(q, t, k) := |{w ∈ Tt : q(w) = q}| denote the frequency
of value q among the q(w) values of the nodes in Tt, given
k colors. (The right-hand-side of the definition of R(q, t, k)
does not seem to depend on k. However, w inherently de-
pends on k.)

In the sum
∑

w∈Tt
(1 − p)q(w), we can group the terms ac-

cording to the q values. Since R(q, t, k) is the frequency of
the value q among the q(w) values of nodes in Tt, we obtain

∑

w∈Tt

(1− p)q(w) =

qmax(t)∑

q=qmin(t)

R(q, t, k)(1− p)q.

Therefore,

E(Y) =
∑

w∈T

(1− p)q(w) =
n∑

t=0

qmax(t)∑

q=qmin(t)

R(q, t, k)(1− p)q.

If we could determine all the R(q, t, k) values explicitly, this
would enable us to efficiently calculate the exact value of
E(Y) using this formula. Determining the R(q, t, k) values
is possible with the following recursion (we write � instead
of k as third parameter, so that the meaning of k is not
affected):

Proposition 2.

R(q, t, �) =

t∑

j=0

(
t

j

)

R

(

q −

(
j

2

)

, t− j, �− 1

)

.

Proof. Assume that color class 1 contains j vertices.
There are

(
t

j

)
possibilities to choose these j vertices. The

remaining t − j vertices must be colored with � − 1 col-
ors. Moreover, the j vertices of color 1 already account for(
j

2

)
vertex pairs with identical colors. Hence, the remain-

ing t − j vertices must be colored in such a way that the
number of vertex pairs with identical colors out of these
t − j vertices equals q −

(
j

2

)
. For this, there are exactly

R
(
q −

(
j

2

)
, t− j, �− 1

)
possibilities.

Based on this recursive formula, we can use dynamic pro-
gramming to compute the R(q, t, �) values and store them in

78

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Algorithm 1 Dynamic programming algorithm to compute
E(Y)

//Set R values for � = 1
for t=0 to n

{
R
((

t

2

)
, t, 1

)
= 1

}

//Set R for higher values of �
for �=2 to k

{
for t=0 to n

{
for q=qmin to qmax

{
//Use the recursive formula to compute R

R(q, t, �) = 0
for j=0 to t

{
//Consider the current term only if non-zero
if q −

(
j

2

)
≥ qmin(t− j, �− 1)

{
term =

(
t

j

)
R
(
q −

(
j

2

)
, t− j, �− 1

)

R(q, t, �) = R(q, t, �) + term

}
}

}
}

}

//Compute E(Y)
result=0
for t=0 to n

{
for q=qmin to qmax

{
result=result+R(q, t, k)(1− p)q

}
}
E(Y)=result

a 3-dimensional table. We fill this table according to increas-
ing values of �. This works because computing R(q, t, �) re-
quires only already computed values of the form R(q′, t′, �−
1). For a given �, we must iterate through the possible val-
ues of t from 0 to n, and for each such t, we must fill the
table for all possible values of q from qmin to qmax. See
Algorithm 1 for details.

As a starting point, if � = 1, then for all values of t, Tt

consists of a single partial coloring in which all vertices
are assigned the same single color. Therefore, if � = 1,
then qmin = qmax =

(
t

2

)
and for this value of q we have

R(q, t, 1) = 1. As additional boundary conditions, we have
R(q, t, �) = 0 in all cases when t < 0 or q < qmin.

Since t = O(n), j = O(n), qmax = O(n2), and � = O(k),
the runtime of Algorithm 1 is O(kn4). This is polynomial
in the size of the graph, though quite high. On the other
hand, the calculation of the R(q, t, �) values is the most
time-consuming part of the algorithm, and these values can
be pre-computed and stored. Afterwards, we can compute

E(Y) more quickly – namely in O(n3) steps – for different
values of n, p, k.

5. THE EXPECTED VALUE OF THE NUM-
BER OF SOLUTIONS

As a by-product of the presented model for algorithm per-
formance, we also obtain results on the expected number
of solutions. This is because the number of solutions is ex-
actly S =

∑
w∈Tn

Yw, and thus the expected number of

solutions is E(S) =
∑

w∈Tn
(1 − p)q(w). As previously, this

sum has exponentially many terms, but again, the terms can
be grouped according to the value q among the q(w) values.
With the notation introduced previously, we can write it as

E(S) =

qmax∑

q=qmin

R(q, n, k)(1− p)q.

Thus we can compute E(S) with a slight modification of Al-
gorithm 1 in O(kn4) time. If the R(q, t, k) values are already
pre-computed, then computing E(S) takes only O(n2) time,
since the above formula for E(S) has less than qmax terms
and qmax = O(n2).

Recalling that our runtime prediction is accurate for non-
k-colorable graphs only, the expected number of solutions
can help us to decide, in what range of the parameters our
runtime prediction is accurate. If the expected number of
solutions is very small, then probably there is no solution
and hence our runtime estimation is accurate, whereas if
the expected number of solutions is high, then probably the
graph is k-colorable, and our runtime prediction is only an
upper bound on the real value. More precisely, knowing the
expected number of solutions allows us to estimate the prob-
ability that a problem instance is solvable using Markov’s
inequality:

Pr(solvable) = Pr(S ≥ 1) ≤ E(S).

What is more, the probability of solvability can also be
bounded from below using the first and second moments
of S [1]. Practically, if the problem instance parameters are
such that E(S) is significantly less than 1, then such prob-
lem instances are probably unsolvable. If, on the other hand,
E(S) is significantly above 1, then the problem instances are
probably solvable. That is, the phase transition will be near
the point where E(S) ≈ 1.

6. NUMERICAL RESULTS
This section shows some simulation results based on the pre-
sented method.

6.1 Size of the search tree
The method presented in Section 4 enables us to gain some
insight as to how the complexity of graph coloring changes
for different values of the parameters n, k, and p. Figure 3
shows an example: E(Y) as a function of n and k, for fixed
p. We can conclude from the figure that for small values of k,
the problem is easy, even if n becomes large. This is consis-
tent with previous results on the relatively low average-case
complexity of graph coloring [27, 26]: although the com-
plexity is exponential in n in the worst case, but it is O(1)

79

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

5
10

15
20

25
30

35
40

45
50

3

4

5

6

7

8
10

0

10
5

10
10

10
15

number of
colors: k

Treesize

number of
vertices: n

Figure 3: Expected size of the search tree for p = 0.5, as a function of n and k.

in the average case. However, as k increases, this increases
the complexity of the problem dramatically (note the expo-
nential scale on the vertical axis). It is still true that the
complexity saturates, i.e. increasing n does not increase the
complexity significantly after some threshold. However, this
saturation takes place at a much higher value than in the
case of small k.

The same phenomenon is depicted in Figure 4 from a dif-
ferent perspective. Here, n is fix, and p and k are varied.
Again, it can be seen from the figure, that the complexity
is in many cases quite low and hardly increasing with grow-
ing k. However, there is again a range of the parameters in
which the complexity explodes. This is in line with the prac-
tical experience of high variability in the runtime of the algo-
rithm. It is also clear that the curve must be monotonously
decreasing in p: this is because in the non-k-colorable case,
where our algorithm model is accurate, increasing p makes
it easier for the algorithm to prove uncolorability, as more
edges are likely to make the contradiction apparent earlier
on (at a higher level of the search tree).

6.2 Number of solutions
Using the method presented in Section 5, we can also look at
the expected number of solutions, and thus the picture can
be further refined. Figure 5 depicts the expected number of
solutions together with the expected size of the search tree
for fix n and k, as a function of p. Since the complexity
is exactly the number of all valid partial colorings in the

search tree, and the number of solutions is the number of
valid colorings on the nth level of the search tree, the figure
shows clearly the changing contribution of the nth level of
the search tree to the total search tree size. As can be seen,
for small values of p, the search tree is dominated by the nth
level.

However, as p increases, the contribution of the nth level
decreases rapidly. This is again a consequence of the fact
that the increased number of edges let the algorithm de-
tect inconsistencies earlier on, thus it becomes rare that the
algorithm actually reaches the nth level.

As mentioned earlier, our results are only accurate for non-k-
colorable graphs, and the transition between k-colorability
and non-k-colorability occurs roughly where the expected
number of solutions is 1. Figure 5 also shows where this
happens: for the used parameters, it is around p ≈ 0.5.
Hence, for the given values of n and k, our results are ac-
curate in the p > 0.5 region. In other words, the curve in
Figure 5 that shows the expected size of the search tree is
accurate only in the right half of the diagram; in the left
half, is is only an upper bound on the algorithm’s runtime
complextiy.

Finally, Figure 6 depicts the expected number of solutions
together with the expected size of the search tree for fix p

and k, as a function of n. As can be seen, for small val-
ues of n (in the range of 2k . . . 3k), the expected number of
solutions is relatively high, i.e. the contribution of the nth

80

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

3
4

5
6

7
0

0.2
0.4

0.6
0.8

1

10
0

10
10

10
20

10
30

10
40

Treesize

edge
probability: p

number of colors: k

Figure 4: Expected size of the search tree for n = 40, as a function of p and k.

level of the search tree is high. In this region, increasing n

significantly increases the algorithm’s runtime. This is logi-
cal, because if n increases, then the algorithm will also visit
many nodes on level n+1 of the search tree. However, after
a while, the already mentioned saturation takes place. The
expected number of solutions becomes very small, indicating
that the algorithm rarely gets to the nth level of the search
tree, as it usually finds a contradiction much earlier, without
descending that far in the search tree. Accordingly, further
increasing n does not significantly increase the complexity
anymore, because the algorithm visits the lower parts of
the search tree rarely anyway. This phenomenon reveals an
interesting and quite complex connection between the algo-
rithm’s runtime complexity and the number of solutions.

7. CONCLUSION AND FUTURE WORK
In this paper, we have investigated the runtime complex-
ity of a typical backtracking algorithm for coloring random
graphs of the class Gn,p with k colors. Using the expected
size of the search tree as the measure of complexity, we de-
vised a polynomial-time algorithm for predicting the back-
track algorithm’s runtime complexity. As a by-product, our
method also delivers the expected number of solutions of
the given problem instance, which is interesting in its own
right, but also helps to quantify when our model of runtime
complexity is accurate.

Using the developed methods, we analyzed numerically how
the algorithm’s runtime complexity depends on the input

parameters n, p, and k. We obtained a rich picture with
regions of very low and very high complexity, and varying
sensitivity with respect to changes in the input parameters.
This way, our model can explain several of the phenom-
ena that had been discovered before about the behaviour of
backtrack-style optimization algorithms on graph coloring
and related problems.

We also showed the multifaceted connection between the ex-
pected complexity of the problem and the expected number
of solutions.

The most important limitation of the approach presented
in this paper is that it is only accurate for non-k-colorable
problem instances. Our future work will focus on extend-
ing the presented results to k-colorable problem instances.
The main challenge of this is to take into account the order
in which the algorithm visits the children of a node of the
search tree, because this can have significant impact on the
algorithm’s running time. This difference might make it nec-
essary to use different and/or more sophisticated methods
to derive similar results for the case of k-colorable graphs as
well.

Acknowledgements
This work was partially supported by the Hungarian Na-
tional Research Fund and the National Office for Research
and Technology (Grant Nr. OTKA 67651).

81

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−250

10
−200

10
−150

10
−100

10
−50

10
0

10
50

10
100

p: edge probability

Treesize

Number of solutions

Figure 5: Expected number of solutions and expected search tree size for n = 75 and k = 10, as a function of

p.

8. REFERENCES
[1] D. Achlioptas and A. Naor. The two possible values of

the chromatic number of a random graph. In 36th
ACM Symposium on Theory of Computing (STOC
’04), pages 587–593, 2004.

[2] N. Alon and M. Krivelevich. The concentration of the
chromatic number of random graphs. Combinatorica,
17(3):303–313, 1997.

[3] E. A. Bender and H. S. Wilf. A theoretical analysis of
backtracking in the graph coloring problem. Journal of
Algorithms, 6(2):275–282, 1985.

[4] B. Bollobás. The chromatic number of random graphs.
Combinatorica, 8(1):49–55, 1988.

[5] D. Brélaz. New methods to color the vertices of a
graph. Communications of the ACM, 22(4):251–256,
1979.

[6] P. Briggs, K. D. Cooper, and L. Torczon.
Improvements to graph coloring register allocation.
ACM Transactions on Programming Languages and
Systems, 16(3):428–455, 1994.

[7] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where
the really hard problems are. In 12th International
Joint Conference on Artificial Intelligence (IJCAI
’91), pages 331–337, 1991.

[8] J. Culberson and I. Gent. Frozen development in
graph coloring. Theoretical Computer Science,

265(1-2):227–264, 2001.

[9] P. Erdős and A. Rényi. On the evolution of random
graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl,
5:17–61, 1960.

[10] M. R. Garey and D. S. Johnson. The complexity of
near-optimal graph coloring. Journal of the ACM,
23:43–49, 1976.

[11] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer.
Some simplified NP-complete graph problems.
Theoretical Computer Science, 1:237–267, 1976.

[12] C. P. Gomes and B. Selman. Algorithm portfolios.
Artificial Intelligence, 126(1-2):43–62, 2001.

[13] G. R. Grimmett and C. J. H. McDiarmid. On
colouring random graphs. Mathematical Proceedings of
the Cambridge Philosophical Society, 77(2):313–324,
1975.

[14] T. Hogg. Refining the phase transition in
combinatorial search. Artificial Intelligence,
81(1-2):127 – 154, 1996.

[15] T. Hogg and C. P. Williams. The hardest constraint
problems: A double phase transition. Artificial
Intelligence, 69(1-2):359–377, 1994.

[16] H. Jia and C. Moore. How much backtracking does it
take to color random graphs? rigorous results on
heavy tails. In Principles and Practice of Constraint
Programming (CP 2004), pages 742–746, 2004.

82

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8
x 10

5

n: number of vertices

Treesize
Number of solutions

Figure 6: Expected number of solutions and expected search tree size for p = 0.5 and k = 5, as a function of n.

[17] T. Luczak. The chromatic number of random graphs.
Combinatorica, 11(1):45–54, 1991.

[18] T. Luczak. A note on the sharp concentration of the
chromatic number of random graphs. Combinatorica,
11(3):295–297, 1991.

[19] Z. Mann and A. Orbán. Optimization problems in
system-level synthesis. In 3rd Hungarian-Japanese
Symposium on Discrete Mathematics and Its
Applications, pages 222–231, 2003.

[20] Z. Mann and A. Szajkó. Improved bounds on the
complexity of graph coloring. In 12th International
Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, 2010.

[21] Z. Mann and T. Szép. BCAT: A framework for
analyzing the complexity of algorithms. In 8th IEEE
International Symposium on Intelligent Systems and
Informatics, pages 297–302, 2010.

[22] N. K. Mehta. The application of a graph coloring
method to an examination scheduling problem.
Interfaces, 11(5):57–65, 1981.

[23] R. Monasson. On the analysis of backtrack procedures
for the coloring of random graphs. In E. Ben-Naim,
H. Frauenfelder, and Z. Toroczkai, editors, Complex
Networks, pages 235–254. Springer, 2004.

[24] E. Shamir and J. Spencer. Sharp concentration of the
chromatic number on random graphs Gn,p.
Combinatorica, 7(1):121–129, 1987.

[25] T. Szép and Z. Mann. Graph coloring: the more colors,
the better? In 11th IEEE International Symposium on
Computational Intelligence and Informatics, 2010.

[26] J. S. Turner. Almost all k-colorable graphs are easy to
color. Journal of Algorithms, 9(1):63–82, 1988.

[27] H. S. Wilf. Backtrack: an O(1) expected time
algorithm for the graph coloring problem. Information
Processing Letters, 18:119–121, 1984.

83

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

84

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Speeding up exact cover algorithms by preprocessing and
parallel computation

Sándor Szabó
Institute of Mathematics and Informatics

University of Pécs
Ifjúság út 6.

7624 Pécs, Hungary
sszabo7@hotmail.com

ABSTRACT
D. Knuth [2] has proposed an exact cover search algorithm
that works well on nontrivial size instances. In this paper
we try to find ways to speed up the search. From this rea-
son we will consider preprocessing the initial data of the
problem to construct certain tables we can look up during
the computation. Again to speed up the exact cover search
we will propose two ways to carry out the computations in
a parallel fashion. Basically we are interested in practical
solutions of a computationally hard problem motivated by
algebraic applications from the author’s practice.

Keywords
Exact cover, k-cover, maximum clique, k-clique problems,
dancing links implementation, speed up by preconditioning,
practical algorithm for NP complete problem in high perfor-
mance computing environment,

1. INTRODUCTION
Let U be a ground set and let A1, . . . , Ak be subsets of U .

If A1 ∪ · · · ∪ Ak = U , then we say that the sets A1, . . . , Ak

form a covering of U . If Ai ∩ Aj = ∅ for each i, j, i �= j,
1 ≤ i, j ≤ k, then we say that the sets A1, . . . , Ak form a
packing of U . If the sets A1, . . . , Ak form a covering and
a packing of U simultaneously, then we say that they form
a partition (or exact cover or tiling) of U . The next toy
example illustrates these concepts.

Example 1. Let the ground set U be defined by U =
{1, . . . , 7}. The members of the family of subsets F of U
are the following

A1 = {2, 3, 5}, A2 = {1, 3, 6}, A3 = {1, 6},
A4 = {3, 4, 5, 7}, A5 = {4, 7}, A6 = {2, 6}.

A routine consideration shows that the sets A1, A3, A5 form
a partition of U . The sets A3, A4 form a packing of U , that
cannot be extended to a partition of U . The sets A3, A4,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MATCOS 2011 Koper, Slovenia
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

A6 form a covering of U which does not contain a partition
of U .

Problem 1. Given a ground set U and a family of sub-
sets F of U . Decide if there are elements A1, . . . , Ak of F
that form a partition of U .

This is the decision version of the so-called exact cover
(or set partition) problem. The problem is known to be NP
complete. At some occasions a simple “yes” or “no” is not
enough and one needs an actual exact cover or all possi-
ble exact covers. Plainly these versions of the exact cover
problem cannot be computationally less demanding than the
decision version of the problem.

Problem 2. Given a ground set U , a family of subsets
F of U and a positive integer k. Decide if there are subsets
A1, . . . , Ak of F that form a partition of U .

This problem is called the decision version of the k-cover
problem. Again one might be interested in exhibiting a k-
cover of U or listing all possible k-covers of U . This problem
is called the enumeration version of the k-cover problem.
Let Γ be a graph. A subgraph Δ is called a clique in Γ if

each two distinct nodes in Δ are adjacent. If Δ has k nodes,
then we simply call it a k-clique.

Problem 3. Given a graph Γ and a positive integer k.
Decide if Γ has a k-clique.

This is the decision version of the k-clique problem. In
certain applications one wants to exhibit a k-clique or to list
all possible k-cliques of Γ.

There is an industrial strength algorithm for solving Prob-
lem 1 described in [2]. This algorithm can be used to solve
Problem 2 too. Indeed it was used for instance in [5] and
[6]. There is a time tested algorithm for solving Problem
3 proposed in [3]. An improved algorithm is presented in
[4]. Another type of improvement is described in [8]. In this
paper we will consider Problems 1 and 2. A k-clique prob-
lem can be associated with the k-cover problem naturally.
In general a graph can be associated with each exact cover
problem. We will point out that keeping this graph available
during the computation provides an extra flexibility that can
be exploited in parallel computations.

2. EXACT COVER
The initial data (U,F) of Problem 1 can be visualized

by introducing a bipartite graph Ω. The nodes of Ω are

85

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

�

�

�

�

�

�

�

�

�

�

�

�

�

7

6

5

4

3

2

1

A6

A5

A4

A3

A2

A1

Figure 1: The bipartite graph Ω in Example 1.

Table 1: The incidence matrix I of the graph Ω in
Example 1 and the extended incidence matrix of I ′.

1 2 3 4 5 6 7
A1 • • •
A2 • • •
A3 • •
A4 • • • •
A5 • •
A6 • •

1 2 3 4 5 6 7 a b c d
• • •

• • • ◦
• • ◦

• • • • ◦ ◦
• • ◦ ◦ ◦

• • ◦

partitioned into two disjoint sets V1, V2. Here V1 = U ,
V2 = F and u ∈ U is adjacent to an A ∈ F if u ∈ A.
In order to construct an algorithm for locating exact covers
let us consider a partition (or exact cover) P of U such that
P ⊆ F . This means that the set of neighbors of the elements
of P form a partition of V1.

Pick an A ∈ F . We distinguish two cases. If A �∈ P ,
then let Ω1 be the graph we get from Ω after deleting A
from Ω but do not delete the neighbors of A. If A ∈ P ,
then let Ω2 be the graph we get from Ω after deleting A and
its neighbors from Ω. In both cases the original instance is
reduced to two smaller instances of the problem. In this way
one can build up a binary searching tree. Then traversing
the tree one can find a solution for the problem.

The branching of the search tree depends on the choice of
the subset A of F . This means that one has to specify the
choice of A to get an algorithm.

2.1 Knuth’s algorithm
The algorithm Knuth [2] suggests builds a non-binary

search tree. Let P be a partition of U such that P ⊆ F .
Pick a u ∈ U . Let B1, . . . , Br be all the neighbors of u in
Ω. For each i, 1 ≤ i ≤ r let Ωi be the graph we get from
Ω after deleting the node Bi together with its neighbors. In
this way the original instance is reduced to r smaller ones.
One then can build a (non-binary) search tree and use it to
find a solution of the original instance.

Of course the branching of the tree depends on the par-
ticular rule one uses to choose the element u of U . Knuth
[2] recommends to choose an u ∈ U for which r is minimal.

One also has to make a decision on the data structures
to represent the data. The initial data (U,F) of Problem

1 can be summarized in an incidence matrix I. The rows
of I are labeled by the elements of F and the columns of I
are labeled by the elements of U . Thus I is an |F | by |U |
matrix consisting of |F ||U | cells. Let A ∈ F , u ∈ U . The
cell where row A crosses column u will be referred as the
(A, u) cell. The entry in the (A, u) cell is one if u ∈ A and
the cell contains zero if u �∈ A.

We further particularize the initial data structure (U,F)
of the algorithm. Let |F | = m and |U | = n. In this way
I is an m by n matrix with zero and one entries. We may
assume that U = {1, . . . , n}. Let βj be the number of ones
in the j-th column of the incidence matrix I. We will call the
numbers β1, . . . , βn branching factors. Let βj be a smallest
one among β1, . . . , βn for which j is minimal.
If βj = 0, then A1 ∪ · · · ∪Am �= U and so one cannot form

a partition of U using the elements of F .
If β1 = · · · = βn = 1, then the sets A1, . . . , Am form a

partition of U .
For the remaining case we may suppose that βj �= 0 and

(β1, . . . , βn) �= (1, . . . , 1). Set r = βj and assume that the
non-zero entries in the j-th column of I are in the rows
indexed by i(1), . . . , i(r). In the partition P of U we are
looking for one member of F must contain the element j of
U and consequently exactly one of the sets Ai(1), . . . , Ai(r)

must be in P . At this point the search procedure forks into r
branches. In the k-th branch the set Ai(k) will be a member
of P . We replace U by U \ Ai(k) and from the family F we
delete each set that is not disjoint to Ai(k). We end up with
r smaller instances of the exact cover problem.

Choosing a minimal among the branching factor is a heuris-
tic principle to try to minimize the size of the search tree.
In many application the members of the family F has the
same number of elements and so the number of the columns
of the incidence matrix reduces with the same extent at each
branching. In this case one can expect the heuristic princi-
ple performing well. However, if there are large differences
in the sizes of the members of F , then the greedy choice
picking the large members of F first may reduce the size of
the incidence matrix I rapidly and reducing the size of the
search tree better. We do not pursue this issue in this paper.

2.2 Secondary columns
Problem 1 can be formulated in terms of solving a system

of linear equations in zero-one variables. Let P be a par-
tition of U and consider the x1, . . . , xm zero-one variables.
Let xi = 1 if Ai ∈ P and let xi = 0 if Ai �∈ P . Now Ax = b,
where A = IT , x is the m-dimensional column vector with
entries x1, . . . , xm and b is the m-dimensional column vec-
tor with entries 1, . . . , 1. Conversely, each zero-one solution
of the system of linear equations Ax = b corresponds to a
partition P of the ground set U . In [2] Knuth pointed out
that after a minor modification his algorithm handles the
more general problem of finding all zero-one solutions of the
system Ax = b, A1x1 ≤ b1. Here A1 is an l by m matrix
with zero-one entries, b1 is an l-dimensional column vector
with components 1, . . . , 1. In other words we can add certain
inequality constraints to the original Ax = b problem.
Set I1 = AT

1 and using this set I ′ = [AT , AT
1] = [I, I1].

Shortly we added l additional columns to the incidence ma-
trix I. The columns of I are called the primarily columns of
I ′ and the columns of I1 are called the secondary columns
of I ′. The columns of incidence matrix I ′ correspond to the
elements of a new ground set U ′ = U ∪ U1. The rows of

86

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

the incidence matrix I ′ correspond to the members of a new
family of subsets of F ′ of U ′. We are looking for all subsets
P ′ of F ′ for which the restrictions of the members of P ′ to
U form a partition of U and the restrictions of the members
of P ′ to U1 form a packing of U1. The algorithm for this
new generalized situation goes almost in the same way as in
the original version. We compute the branching factors only
for the primary columns. But we check if two sets in F ′ are
disjoint or not instead of checking if their restriction to U is
disjoint or not.

For the sake of easier reference we would like to spell out
the problem that Knuth’s algorithm solves.

Problem 4. Given a ground set U and a partition U1,
U2 of U . Further given a family of subsets F of U . Decide
if there is a subset P of F such that P|U1

forms a partition
of U1 and P|U2

forms a packing of U2.

Here P|Ui
= {A ∩ Ui : A ∈ P} is the restriction of P

to Ui, for each i, 1 ≤ i ≤ 2. In the U2 = ∅ particular
case the problem reduces to Problem 1. If U1 = ∅, then
one cannot compute the branching factors. So we should
pay attention to handle this particular case correctly in the
algorithm. During execution the algorithm generates various
subproblems and among these quite naturally subproblems
with U1 = ∅ may occur.
Our first observation can be summarized in the follow-

ing manner. Suppose we face Problem 1. Before starting
Knuth’s algorithm first we systematically inspect the inci-
dence matrix I associated with the problem. We construct
secondary columns and we add them to I. In a typical sit-
uation the search tree of the modified problem is smaller
than the search tree in the original problem as at each step
more rows are deleted from the incidence matrix. Conse-
quently the branching factors are smaller. The secondary
columns are constructed only once at the beginning of the
algorithm. In this sense we use a preprocessing to speed up
the search. There are various possibilities to construct sec-
ondary columns. For Problem 2 there seem to be more ways
than for Problem 1.

Using the terminology of the zero-one linear programming
one can say that when we generate secondary columns in a
sense we generate certain cuts to slice down pieces from the
domain of feasible solutions.

We close this section noticing that Knuth’s original algo-
rithm for solving Problem 1 can be extended to solve the
following problem.

Problem 5. Given a ground set U and a partition U1,
U2, U3 of U . Further given a family of subsets F of U .
Decide if there is a subset P of F such that P|U1

forms a
partition of U1, P|U2

forms a covering of U2 and P|U3
forms

a packing of U3.

2.3 Dancing links
Let us consider the cells of the incidence matrix I that

filled with ones. A fixed cell C containing one has four
neighbors. Two in the same row. One CL on the left of
C. One CR on the right of C. (If in the way of looking for
CL we would reach the beginning of the row, then we should
continue from the end of the row.) Two in the same column.
One CT on the top of C. One CB below C. (If in the way
of looking for CT we reach the top of the column, then we
continue from the bottom of the column.) Then we direct

an arrow from C to each of CL, CR, CT , CB . The result
is a four fold linked list. This list represents the incidence
matrix I. Geometrically the four fold linked list is a torus.
The vertical lines are the longitudes on the torus. The hor-
izontal lines are the latitudes on the torus. The first row
and the first column play the role of a kind of coordinate
system or frame. Figure 4 depicts the incidence matrix I
in Example 1 as an illustration. A horizontal and a vertical
portion of the four fold linked list are shown in Figure 2 and
3, respectively

As the computation unfolds one deletes rows and columns
from I to get a smaller incidence matrix. When back track-
ing occurs one has to restore an earlier version of the inci-
dence matrix. The most striking feature of this book keep-
ing machinery is that the links retain enough information to
make this restoration possible.

A row operation is the following. Given a row and a fixed
entry in this row. We go through the entries of the row
moving from left to right starting at the fixed entry. During
this trip we link out each entry vertically. The entry at the
starting point is treated exceptionally. We do not link out
the starting entry.

One can reverse the result of a row operation completely
and restore the original situation by going through the en-
tries of the row moving from right to left stating at the fixed
entry and link in the entries vertically. We do not link in
the starting entry. Let us call this operation a reverse row
operation.

A column operation is the following. Given a column and
a fixed entry in the column. We go through the entries of the
column from up to bottom starting at the fixed entry and
carry out a row operation in the row of each entry. The row
of the fixed starting entry in the column is treated excep-
tionally. We do not carry out a row operation in connection
with the row of this entry. Also the entry from the hori-
zontal frame in this column is treated exceptionally. We do
not carry out a row operation in the row of the frame entry.
Instead we link out the frame entry horizontally.

On can completely reverse the result of a column operation
by going through the entries of the column from down to up
and carrying out a reverse row operation in the row of each
entry. Let us call this operation a reverse column operation.

A pivot operation is the following. Given a row. We will
call this the pivot row. We go through the entries of the pivot
row moving from left to right starting at the frame entry in
the row. At each entry we carry out a column operation.
The column of the frame entry is treated exceptionally. We
do not carry out a column operation in connection with the
column of the frame entry. Instead we link out this entry
vertically.

One can reverse a pivot operation completely and restore
the original conditions by going through the pivot row mov-
ing from right to left starting at the frame entry and carry
out a reverse column operation in connection with the col-
umn of each entry. At the frame entry we do not carry out a
reverse row operation instead we link in the entry vertically.
But in fact we do not want to restore the original situation
completely. After restoring the original conditions we would
like to delete the pivot row from the table. This can be
achieved by going through the pivot row moving from left
to right starting at the frame and linking out each entry ver-
tically. Let us call this operation a reverse pivot operation.

Example 2. Consider the ground set U and family F of

87

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

�

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

� �
��

Figure 2: Bottom: A horizontal portion of the dou-
ble linked list. Top: The middle entry is linked out
horizontally.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 3: Left: A vertical portion of the double
linked list. Right: The middle entry is linked out
vertically.

subsets of U given in Example 1. Suppose A6 is chosen
to be a member of the partition P we intend to construct.
The new incidence matrix is constructed by deleting the
members of F that are not disjoint to A6. With the row of
A6 we start a pivot operation. First we mark the horizontal
section in the 6-th row from the frame to the 1-st element of
A6. Next link out the row of A6 and mark a vertical section
joining to the end point of the earlier marked section. With
the column of the 1-st element of A6 we start a column
operation. At the frame link out the column of the 1-st
element of A6 and mark a vertical section joining to the end
point of the earlier marked section. Then mark a horizontal
section joining to the end point of the earlier marked section
to start a row operation. Link out vertically the end point
of the marked section. Mark a horizontal section joining the
earlier marked section. Link out vertically the end point
of the marked section. Continue in this way linking out
the elements of A1 until we reach again the 3-rd column.
With this a row operation is completed. Then move down
vertically to seek further members of F that are not disjoint
to A6. Repeat the whole procedure in connection with each
element of A6. At the end the path we followed reach back
to the point we started. Figures 5 to 7 illustrate a few steps
of the procedure.

Knuth [2] illustrates this algorithm by solving various puz-
zles. But make no mistake. This is a serious algorithm with
important applications.

3. PREPROCESSING
Let us consider an exact cover problem with the initial

� � � � � � � �

�

�

�

�

�

�

� �

� �

�� � �

� �

� � �

� � �

Figure 4: The incidence matrix I in Example 1 rep-
resented as a double linked list. The entries are
marked as bullets. The single non-oriented edges
represent double oriented links.

� � � � � � � �

�

�

�

�

�

�

� �

� �

�� � �

� �

� � �

� � �

Figure 5: First step of canceling A6 from the family
F in Example 1. We marked a horizontal section in
the 6-th row.

� � � � � � � �

�

�

�

�

�

�

� �

� �

�� � �

� �

� � �

� � �

Figure 6: We linked out the row of A6 and marked
a vertical section.

88

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

� � � � � � � �

�

�

�

�

�

�

� �

� �

�� � �

� �

� � �

� � �

Figure 7: We linked out the column of the first ele-
ment of A6 and marked a vertical section.

data (U,F), where U = {1, . . . , n} and F = {A1, . . . , Am}
is a family of subsets of U . Suppose that Ai ∩ Aj = ∅.
Set U ′ = U \ (Ai ∪ Aj) and let F ′ be the family of all the
members of F that are disjoint to both Ai and Aj . Sup-
pose that we know from some source that the ground set U ′

cannot be partitioned into the members of the family F ′.
This piece of information can be exploited to speed up the
search. Namely, we form an m-dimensional column vector
a. The i-th and j-th components of a are equal to one and
the remaining components of a are equal to zero. We aug-
ment the incidence matrix of the original problem with the
vector a as a secondary column. Using the terminology of
the reformulation elucidated in Subsection 2.2 we may say
that we have added the constraint xi+xj ≤ 1 to the system
of equations Ax = b.

In this section we present ways to spot such useful con-
straints. We describe a way to condense these inequalities
into a smaller number of inequalities in case this looks de-
sirable. In other words we will consider the problem of
condensing the secondary columns into a fewer number of
secondary columns.

3.1 Condensing the secondary columns
Let IS them by l submatrix consisting of all the secondary

columns of the incidence matrix I of an exact cover problem.
Each column of IS has two entries equal to one and m − 2
entries that are equal to zero. A typical column codes the
inequality xi + xj ≤ 1, the i-th and j-th component of the
column are equal to one.

Using IS we construct a graph Λ. At the beginning of
the construction Λ is the complete graph on the vertex set
V = {1, . . . , l}. We pick the columns of IS one by one. If a
column corresponds to the inequality xi + xj ≤ 1, then we
delete the edge connecting the nodes i and j. Let L be the
adjacency matrix of Λ. We illustrate the procedure working
out an example in details.

Example 3. The matrix of the secondary columns IS of
an incidence matrix I is given in Table 2. The adjacency
matrix L of the graph Λ is shown in Table 3

Next we color the nodes of Λ. A coloring of the vertices
of Λ with t colors is termed a well coloring if each vertex
receives exactly one of the t colors and if adjacent vertices
are not receiving the same color. The set of all the vertices of
Λ colored with the i-th color form a color class Ci. Clearly,

Table 2: The incidence matrix IS in Example 3.

1 • • • •
2 • • •
3 • • • •
4 • • • • •
5 • • •
6 • • • •
7 • • •
8 • • •
9 • • • • •

Table 3: The adjacency matrix L of the graph Λ in
Example 3.

1 2 3 4 5 6 7 8 9
1 • • • •
2 • • • • •
3 • • • •
4 • • •
5 • • • • •
6 • • • •
7 • • • • •
8 • • • • •
9 • • •

the color classes C1, . . . , Ct form a partition of the vertex set
V of Λ.

It is well known that determining the minimal number
of colors a given graph can be well colored with belongs to
the NP complete complexity class. We will use a greedy
algorithm to color the nodes of Λ.

Suppose that a color class, say C1, has at least three ele-
ments. Let C1 = {i(1), . . . , i(r)}, where r ≥ 3. Since C1 is a
colors class of the nodes of Λ, it follows that the inequality
xi + xj ≤ 1 holds for each i, j ∈ C1. In other words only
at most one of the zero-one variables xi(1), . . . , xi(r) can be
equal to one. Therefore the inequality xi(1) + · · ·+ xi(r) ≤ 1
must hold. We form an m-dimensional column vector a
whose entries on the i(1), . . . , i(r) components are equal to
one and the other components are filled with zeros. We add
a to the incidence matrix IS as a secondary column. Then
we delete each column of IS that corresponds to a constraint
xi + xj ≤ 1 with i, j ∈ C1. In this way we add one column
and drop r(r−1)/2 columns. We carry out this reduction in
connection with each color class that contains at least three
elements. Of course in order to compensate the changes
when we delete the column of IS corresponding to the con-
straint xi + xj ≤ 1 we have to connect the nodes i and j in
the graph Λ. We can color the new graph Λ again and if
there is a color class with at least three elements, then we
can further reduce the number of columns of the IS matrix.

The nodes of the graph Λ in Example 3 can be colored
with three colors. For instance such that the colors classes
are the following

C1 = {1, 2, 5, 9}, C2 = {3, 4, 6, 7}, C3 = {8}.
Using these color classes the IS matrix in Table 2 can be
condensed into a smaller matrix given by Table 4.

89

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Table 4: The condensed form of the IS matrix in
Example 3 and displayed in Table 2.

1 • •
2 •
3 • •
4 • • •
5 •
6 • •
7 •
8 • • •
9 • • •

3.2 Dominance
Let us consider Problem 1 with the data (U,F).

Definition 1. Suppose u ∈ U , A,B ∈ F such that u �∈
A∪B and A∩B = ∅. We say that u dominates the pair A,
B if u ∈ C implies C ∩ (A ∪B) �= ∅ for each C ∈ F .

Proposition 1. If u dominates A, B, then A, B cannot
be together members of a partition P ⊆ F of U .

Proof. Let P ⊆ F be a partition of U and assume on
the contrary that A,B ∈ P . Since P is a partition, there
is a C ∈ P for which u ∈ C. As u �∈ A, u �∈ B, it follows
that C �= A, C �= B. Since P is a partition we get that
C ∩A = ∅, C ∩B = ∅. On the other hand by the definition
of the dominance C∩A �= ∅ or C∩B �= ∅. This contradiction
completes the proof.

For a fixed u ∈ U , A,B ∈ F by inspecting all possible
choices for C ∈ F one can decide if u dominates A, B.
Suppose that F = {A1, . . . , Am}. If u dominates Ai, Aj ,
then we add a secondary column to the incidence matrix of
the problem. The secondary column codes the inequality
xi + xj ≤ 1 preventing Ai, Aj being together members of a
partition of U .

Before embarking on a large scale exact cover search it is
advisable to carry out a complete inspection to locate all the
possible dominances. We may not find any dominance but
also we may and it may reduce the size of the search space
considerably.

As an exercise the reader can verify that in the exact cover
problem instance given in Example 1 the element 2 ∈ U
dominates A2, A5 ∈ F . So we added a secondary column to
the incidence matrix. This secondary column is labeled by
a. Table 1 shows the original incidence matrix and the new
incidence matrix extended with four secondary columns.

Let us consider Problem 4 with the data (U,F), where U
is partitioned into U1 and U2. Let I = [IP , IS] be the m
by n incidence matrix associated with (U,F). The primary
columns are in IP and the secondary columns are in IS .

Definition 2. Let a, b be column vectors of IP . We say
that a dominates b if ai = 1 implies bi = 1 for each i,
1 ≤ i ≤ m.

Proposition 2. If a dominates b, then we may move b
from IP to IS.

Proof. Let u, v be the elements of U that correspond
to the columns a, b, respectively. Set U ′

1 = U1 \ {v}, U ′
2 =

U2 ∪ {v}.

�
�
�
��� � �

� � �

A4 A3 A1

A6 A5 A2

Figure 8: Graph Γ in Example 1.

Suppose P ⊆ F such that P|U1
is a partition of U1 and

P|U2
is a packing of U2. It is clear that P|U′

1
is a partition

of U ′
1 and P|U′

2
is a packing of U ′

2.
Next assume that P ⊆ F such that P|U′

1
is a partition of

U ′
1 and P|U′

2
is a packing of U ′

2. As P|U′
1
is a partition of

U ′
1, there is an A ∈ P for which u ∈ A ∪ U ′

1. Consequently
u ∈ A. Since the column a dominates column b from u ∈ A,
it follows that v ∈ A. Consequently v ∈ A ∪ U1. Therefore
P|U1

is not only a packing of U1 but P|U1
is a partition of

U1. This completes the proof.

In the incidence matrix given in Table 1 the 1-st column
dominates the 6-th column. So the 6-th column can be
changed to a secondary column. The 5-th columns domi-
nates the 3-rd column and so the 3-rd column can be turned
into a secondary column. Finally, the 4-th column domi-
nates the 7-th column and hence the 7-th column can be a
secondary column.

Turning a primary column to a secondary column im-
proves the efficiency of the algorithm for fewer columns are
used to compute the branching factors. This improvement
is not particularly significant. However, the cost of check-
ing the dominances of columns is not high either. In the
same time it may happen that a secondary column drops
out entirely when we condense the secondary columns.

3.3 Cliques
To the data (U,F) of Problem 1 we may assign a graph Γ.

The nodes of Γ are the elements of F . Two distinct nodes
Ai, Aj are connected by an edge if Ai ∩ Aj = ∅. Let M
be the adjacency matrix of Γ. The rows and columns of M
are labeled by the elements of F and so M is an |F | by |F |
matrix, that is, an m by m matrix. The graph Γ in Example
1 is depicted in Figure 8 and Table 5 contains the adjacency
matrix M of Γ.

Definition 3. The graph Γ is called the packing graph of
the instance (U,F) of the exact cover problem.

The cliques in the graph Γ correspond to packings of the
ground set U and so naming Γ the packing graph of the
instance (U,F) of Problem 1 is justifiable.

In the particular case when each member of the family F
has the same number of elements, that is, when |A1| = · · · =
|Am|, then each partition of U must be an exact k-cover of
U , where k = |U |/|A1|.

The additional information that each partition P ⊆ F of
U consists of k members of F can be exploited to speed up
the search. For the sake of brevity let us call a partition
consisting of k subsets a k-partition. A k-partition P ⊆ F
of U corresponds to a k-clique Δ in the graph Γ. The exist-
ing and well tested clique search algorithms (see [3], [4], [8])

90

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Table 5: The adjacency matrix M of the graph Γ in
Example 1. The rows and columns are labeled by
1, . . . , 6 instead of A1, . . . , A6.

1 2 3 4 5 6
1 • •
2 •
3 • • •
4 • •
5 • • • •
6 • •

can be used to solve exact k-cover problems too. It seems
that the exact cover algorithm outperforms the clique search
algorithms. The author does not know about any system-
atic rigorous comparison project and so the evidence is only
anecdotical. Such an undertaking would need algorithms
implemented in a similar programming environment and a
stock of bench mark tests. At this moment both are lacking.

The clique search algorithm makes amply evident that
well coloring of the nodes of graph Γ helps in reducing the
size of the search space. Suppose C1, . . . , Ct are all the color
classes in a well coloring of Γ with t colors. As a k-clique
Δ in Γ cannot have two nodes in the same color class, it
follows that k ≤ t. We can use this idea in connection with
exact k-cover search.

For the color class Ci let us form anm-dimensional column
vector ai such that the j-th component of ai is equal to
one whenever j ∈ Ci. We then add the column vectors
a1, . . . , at to the incidence matrix of the exact cover problem
as secondary columns.

Suppose that at one point during the exact k-cover search
we find that a partially built partition P ⊆ F of U contains
p members of F and q of the secondary columns a1, . . . , at

are still in the incidence matrix. (A partially built partition
P of U is of course simply a packing of U .) If p + q < k,
then plainly the partial partition P cannot be extended to
a k-partition of U . Therefore a little extra book keeping
provides us with an opportunity to prune the search tree.

The coloring idea also provides us with a preprocessing
opportunity. Suppose that the nodes i, j ∈ U of Γ are ad-
jacent. Consider the set V of all the common neighbors of
i and j. (Since Γ has no loops i, j �∈ V .) Let Γi,j be the
subgraph of Γ spanned by V . Suppose that the nodes of Γi,j

are well colored with t colors. Note that if t < k − 2, then
Γi,j cannot contain any (k − 2)-clique and consequently Γ
cannot contain any k-clique. In other words, if t < k − 2
holds, then the members Ai, Aj ∈ F cannot be together in
a k-partition P ⊆ F of U . At the outset of the computation
one may test each edge of Γ and as a result one may get a
number of secondary columns to add to the incidence matrix
and speeding up the search in this way.

4. PARALLEL SEARCH
In this section we divide the given exact cover problem

into a large number of smaller instances. These smaller size
problems can be solved independently of each other on sep-
arate processors and using ordinary serial exact cover search
algorithms.

We place the subproblems to a large stack. The master

processor maintains the stack assigning the subproblem on
the top of the stack to the slave processor that is ready
to work. One usually is not in position to predict the run
times of these subproblems. Therefore we try to construct
problems many times more than processors are available.
We hope that in this way the work load of the processors
turn out to be reasonable well balanced.

4.1 Splitting partitions
Let (U,F) be an initial data of Problem 1 and suppose

that F1, F2, F3 form a partition of F .

Definition 4. We say that F1, F2, F3 is a splitting parti-
tion of (U,F) if F1 �= ∅, F3 �= ∅ and if Ai ∩ Aj �= ∅ for each
Ai ∈ F1, Aj ∈ F3.

For a splitting partition F1, F2, F3 of (U,F) we consider
Problem 1 in two copies with initial datum (U,F1 ∪ F2),
(U,F2 ∪ F3), respectively.

Proposition 3. If P ⊆ F is a solution of Problem 1 with
the initial data (U,F), then either P is a solution of Problem
1 with the initial data (U,F1 ∪ F2) or P is a solution of
Problem 1 with the initial data (U,F2 ∪ F3).

Proof. Assume on the contrary that P is a partition of
U that solves the (U,F) instance of Problem 1 and P does
not solve any of the (U,F1 ∪ F2), (U,F2 ∪ F3) instances of
Problem 1. This means that there is an Ai ∈ P such that
Ai ∈ F1 and there is an Aj ∈ P such that Aj ∈ F3. By the
definition of the splitting partition F1, F2, F3 of (U,F) it
follows that Ai ∩Aj �= ∅. This violates that P is a partition
of U .

We would like to point out that a partition P of U can
solve the instances (U,F1 ∪F2), (U,F2 ∪F3) simultaneously.
In other words the list of solutions to the first instance and
the list of solutions to the second instance may have elements
in common. Dividing a problem into two smaller problems
in this way cannot be used to determine the number of so-
lutions or enumerate all possible solutions. However, it is
perfectly usable to inspect all solutions. One may inspect
a solution several times but none of the solutions remains
unchecked.

Clearly, the larger is the quantity ρ = min{|F1|, |F3|} the
smaller are the sizes of the instances (U,F1∪F2), (U,F2∪F3)
and so we try to find a splitting partition F1, F2, F3 of (U,F)
with a maximal ρ.

Problem 6. Given (U,F) find a splitting partition F1,
F2, F3 of (U,F) preferably with large value of ρ.

Finding a splitting partition for which ρ is maximal is it-
self a computationally hard problem. It can be reduced to
finding a certain maximal bipartite complete subgraph in a
bipartite graph. We overcome this difficulty by constructing
a nearly optimal splitting partition using a computationally
less demanding greedy algorithm instead of finding an opti-
mal splitting partition.

Here is a straight forward greedy algorithm to construct
a splitting partition F1, F2, F3 of (U,F).

(1) Initially set F1 = ∅, F2 = ∅, F3 = U .

(2) Pick an A ∈ F2∪F3. Let FA be the family of members
of F3 that is disjoint to A. We choose an A for which
|FA| is minimal.

91

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

(3) If |F3| − |FA| − 1 ≥ |F1| + 1, then set F1 = F1 ∪ {A},
F2 = (F2∪FA)\{A}, F3 = F3\[FA∪{A}] and continue
at step 2.

(4) If |F3| − |FA| − 1 < |F1|+ 1, then terminate.

If F1 �= ∅, F3 �= ∅, then F1, F2, F3 is a splitting partition
of (U,F). A possible parallel algorithm to solve Problem 1
is the following. The greedy algorithm provides us with a
splitting partition F1, F2, F3 of (U,F). If ρ ≥ 2 we consider
the smaller problems with the initial datum (U,F1 ∪ F2),
(U,F2 ∪ F3). If ρ = 1, then we do not construct smaller
problems. We repeat this procedure in connection with the
smaller problems. Continuing in this way finally we end up
with the smaller instances (U,F ′

1), . . . , (U,F
′
s) of Problem 1.

The new instances can be processed independently of each
other.

4.2 The chopping method
Let (U,F) be an initial data of Problem 2 and suppose

that the sets F1, . . . , Ft form a partition of F . Choose an i,
1 ≤ i ≤ t and let σi be the number of distinct members B,
C of Fi for which B ∩ C = ∅. Set σ = σ1 + · · ·+ σt.

Definition 5. The partition F1, . . . , Ft is called a (σ, t)
chopping of (U,F).

If B,C ∈ Fi and B ∩ C = ∅, then we construct a new
instance of the exact (k − 2)-cover problem whose initial
data is (U ′, F ′). Here F ′ consists of all members of F that
are disjoint to B and C and U ′ = U \ (B ∪ C). Sup-
pose we have a (σ, k − 1) chopping of (U,F). In this chop-
ping there are σ pairs B1, C1, . . . , Bσ, Cσ of members of F
for which the above construction can be carried out. Let
(U ′

1, F
′
1), . . . , (U

′
σ, F

′
σ) be these resulted initial datum.

Proposition 4. If the exact k-cover problem with the ini-
tial data (U,F) has a solution, then the exact (k − 2)-cover
problem has a solution with at least one of the initial datum
(U ′

1, F
′
1), . . . , (U

′
σ, F

′
σ).

Proof. Assume on the contrary that the exact (k − 2)-
cover problem does not have any solution with the initial
data (U ′

i , F
′
i) for each i, 1 ≤ i ≤ σ. By the assumption

of the proposition there is a partition of U that solves the
(U,F) instance of the k-cover problem. Let P be such a
partition of U .

If B1, C1 ∈ P , then P \{B,C} is a solution of the (U ′
1, F

′
1)

instance of the (k − 2)-cover problem. This contradicts the
indirect assumption. Thus either B1 �∈ P or C1 �∈ P . We can
add a secondary column to the instance (U,F) that prohibits
B1 and C1 being members of an exact k-cover together. We
may repeat this argument with B2, C2 and finally with Bσ,
Cσ. In this way we can add σ secondary columns to the
instance (U,F). Note that the σ secondary columns can be
condensed into k − 1 secondary columns. Namely, if F =
{A1, . . . , Am} and Ai ∈ Fj , then the i-th component of the
j-th condensed secondary column is equal to 1. Let (U∗, F ∗)
be the instance augmented by the k− 1 secondary columns.
The above argument shows that each partition P of U that
solves the instance (U,F) can be extended to a partition P ∗

of U∗ that solves the instance (U∗, F ∗).
The secondary columns guarantee that each partition that

solves the instance (U∗, F ∗) can have at most k−1 members
of U∗. But P has k members. This contradiction completes
the proof.

A parallel k-cover algorithm suggested by Proposition 4
is the following. Let us start with the (U,F) instance of the
k-cover problem. Construct a (σ, k − 1) chopping of (U,F).
Identify the sets B1, C1, . . . , Bσ, Cσ of F . Using these sets
construct the (k − 2)-cover problems with initial datum

(U ′
1, F

′
1), . . . , (U

′
σ, F

′
σ).

If one these instances has a solution then this can be ex-
tended to a solution of the original instance (U,F). By
Proposition 4, each solution of the instance (U,F) arises
in this way. Stating it equivalently we reduced the (U,F)
instance of the k-cover problem to the

(U ′
1, F

′
1), . . . , (U

′
σ, F

′
σ)

instances of the (k − 2)-cover problem. The σ subproblems
can be solved independently of each other. One can use any
serial (k − 2)-cover algorithm.

We have to point out that this algorithm can find a k-
cover of U several times. This it is not suitable to determine
the number of solutions of the instance (U,F). However, a
slight modification of the procedure can prevent finding a
solution twice. Namely, when the (k − 2)-cover algorithm
terminates with the initial data (U ′

1, F
′
1) add a secondary

column to each instances

(U ′
2, F

′
2), . . . , (U

′
σ, F

′
σ)

that prevents the sets B1, C1 to be members of a (k − 2)-
cover together. Then work with the modified instances

(U
(1)
2 , F

(1)
2), . . . , (U (1)

σ , F (1)
σ).

When the (k − 2)-cover algorithm terminates with the ini-

tial data (U
(1)
2 , F

(1)
2) add a secondary column to each of the

instances

(U
(1)
3 , F

(1)
3), . . . , (U (1)

σ , F (1)
σ)

that prevents B2, C2 to be members together of a (k − 2)-
cover. Then work with these new instances

(U
(2)
3 , F

(2)
3), . . . , (U (2)

σ , F (2)
σ).

Continuing in this way finally solve the (U
(σ−1)
σ , F

(σ−1)
σ) in-

stance of the (k − 2)-cover problem.
It seems that we have lost the parallel nature of the algo-

rithm. But this is not the case. One can construct the

(U
(0)
1 , F

(0)
1), (U

(1)
2 , F

(1)
2), . . . , (U (σ−1)

σ , F (σ−1)
σ)

instances of the (k− 2)-cover problem at the beginning and

solve them independently of each other. Here (U
(0)
1 , F

(0)
1) =

(U ′
1, F

′
1).

Any partition F1, . . . , Fk−1 of F can serve as a (σ, k −
1) chopping of (U,F). However, the number of the initial
instances can be reduced by choosing a (σ, k − 1) chopping
of (U,F) for which the value of σ is possibly small. This
suggests the next problem

Problem 7. Given (U,F) and a positive integer t. Find
a (σ, t) chopping of (U,F) preferably with small value of σ.

Finding a (σ, t) chopping of (U,F) with an optimal value
of σ is computationally expensive. Therefore we settle for
a greedy algorithm to construct a not necessarily optimal
(σ, t) chopping. The greedy procedure below provides a (σ, t)
chopping of (U,F).

92

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

(1) Set G = F , F1 = · · · = Ft = ∅ as initial values.
(2) While G �= ∅ repeat the following. Pick an A ∈ G. Let

di be the number of members of Fi that is disjoint to
A. Let dj be a smallest of d1, . . . , dt. Set G = G\{A},
Fj = Fj ∪ {A}.

5. A CLUMSY ALGORITHM
Let us consider Problem 1 with the data (U,F), where

U = {1, . . . , n} is the given ground set and F = {A1, . . . , Am}
is the given family of subsets of U . Let I be the incidence
matrix associated with the data (U,F), that is, the cell at
the intersection of the i-th row and j-th column contains
one if j ∈ Ai. We try to construct a partition P ⊆ F of
U . Initially we set P = ∅. In a typical case we choose an
Ai ∈ F that is disjoint to each member of P . Setting

U = U \Ai, F = F \ {Ai}, P = P ∪ {Ai}
we end up with a new smaller instance of the problem.

In the course of this reduction we check many times if
given sets Aj , Aj ∈ F are disjoint or not. The adjacency
matrixM of the graph Γ contains these pieces of information
and they do not change as the computation unfolds. The
dancing link algorithm we propose is not as sophisticated
as Knuth’s dancing link algorithm. We call it the clumsy
version.

A row operation is the following. Given a row. We go
through the entries of the row moving from left to right
starting at the frame entry and link out the entries vertically.
One can completely reverse the result of a row operation by
going through the entries of the row moving from right to left
starting at the frame entry and link in the entries vertically.
Let us call this operation a reverse row operation.

A column operation is the following. Given a column.
We go through the entries of the column moving from up
to down starting at the frame entry and link out the en-
tries horizontally. One can completely reverse the result of
a column operation by going through the entries of the col-
umn moving from down to up starting at the frame entry
an link in the entries horizontally. Let us call this operation
a reverse column operation.

A row pivot operation is the following. Given a setAi ∈ F .
We go through the entries of the horizontal frame moving
from left to right starting at the corner of the frame. The
entries in the horizontal frame correspond to elements of the
ground set U . If the entry in the horizontal row corresponds
to the element u ∈ U and u ∈ Ai, then carry out a column
operation. Finally place the index i to a stack. One can
completely redo the result of a row pivot operation restoring
the original conditions. Pick up the index i from the stack.
Go through the elements of Ai in reverse order. If u ∈
Ai, then link in horizontally the entry corresponding to the
element u and carry out a reverse column operation. Let us
call this operation a reverse row pivot operation.

A column pivot operation is the following. Given a subset
Ai ∈ F . The row corresponding to the subset Ai is called
the pivot row. We go through the entries of the vertical
frame moving from up to down starting at the corner of
the frame. The entries in the vertical frame correspond to
members of the family F . If the entry in the vertical frame
corresponds to Aj ∈ F and Aj ∩ Ai �= ∅, then carry out
a row operation. Then place the index j to a stack. (The
condition Aj∩Ai �= ∅ can be checked by reading off an entry

of the adjacency matrix M of the graph Γ what we store.)
One can completely reverse the results of a column pivot
operation to restore the original situation. In order to do
this pick up the j indices from their stack one by one and
carry out a reverse row operation in connection with the j-
th row. (Remember that the j indices are stored in reverse
order in the stack.) But in fact we do not wish to restore the
original situation completely. We want to delete the pivot
row from the table. We can achieve this simply by carrying
out a row operation in connection with the pivot row. Let
us call this operation a reverse column pivot operation.

Suppose that we are given an instance (U,F) of Problem
1. Based on the branching factors we locate a member Ai

of F . Using Ai we carry out a row pivot operation then a
column pivot operation on the incidence matrix and we end
up with a smaller instance of the problem.

The clumsy algorithm is not faster than the more sophis-
ticated version and for the adjacency matrix M and for the
stacks it requires more storage place. The only reason we
mention it that it handles the information relegated to the
secondary columns in a more flexible manner. As a matter of
fact the clumsy algorithm does not need secondary columns
at all. For example the information that the sets Ai, Aj ∈ F
cannot be together members of a partition P ⊆ F of U can
be incorporated into the problem simply changing an entry
in the adjacency matrix M from one to zero. This modifi-
cation can be done at any phase of the computation. The
parallel computations greatly benefit from this larger flexi-
bility.

In order to get some idea of the sizes of the instances
one can handle we would like to mention two computational
results briefly. They are published in [6] and [7], respectively.
In the first one the initial data can be characterized by the
next numbers |U | = 37 = 2187, |F | = 37 = 2187, k =
35 = 243. This means that the search tree had 243 levels.
All exact k-covers were required for inspection. There were
158 760 solutions altogether.

In the second instance the summary statistics of the initial
data is the following |U | = (10)(132) = 1690, |F | = 133 =
2197, k = 132 = 169. Therefore the search tree has 169
levels. All exact k-covers were needed for inspection. There
were about 5× 107 solutions.

6. CONCLUSIONS
To each instance (U,F) of the exact cover problem a graph

Γ, the packing graph of the instance, can be associated. Cer-
tain edges of Γ can be deleted without changing the number
of partitions of the ground set U . This information can be
conveniently incorporated into the secondary columns of the
initial data of the exact cover instance. This speeds up the
computations. We discuss how a dominance concept helps
to detect deletable edges in Γ and then how to condense the
resulted secondary columns by using greedy coloring. This
idea works for each exact cover problem. For exact k-covers
further speed up is available also based on greedy coloring.
We may refer to these as preprocessing ideas.

The paper also deals with parallel exact cover algorithms.
The first one is based on the concept of splitting partition
of the instance (U,F). This can be applied for solving each
exact cover problem. The second parallel algorithm can be
used only for solving exact k-cover problems and it utilizes
the concept of (σ, k− 1) chopping of the instance (U,F). In
the last section of the paper we propose to keep the packing

93

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

graph Γ in the memory of the computer during the whole
computation in order to retain a greater flexibility for this
last type of parallel algorithm.

7. ACKNOWLEDGMENTS
The author would like to thank István Kovács for his help

in presenting the paper and László Kóródi for his help in the
computations.

8. REFERENCES
[1] P. Kaski, P. R. J. Österg̊ard, Classification Algorithms

for Codes and Designs, Springer-Verlag Berlin
Heidelberg 2006 pp. 145–154.

[2] D. E. Knuth, Dancing links, in Millennial Perspectives
in Computer Science, J. Davies, B. Roscoe, and J.
Woodcock, Eds., Palgrave Macmillan, Basingstoke,
2000, pp. 187–214.

[3] R. Carraghan, P. M. Pardalos, An exact algorithm for
the maximum clique problem, Operation Research
Letters 9 (1990), 375–382.

[4] P. R. J. Österg̊ard, A fast algorithm for the maximum
clique problem, Discrete Applied Mathematics 120
(2002), 197–207.

[5] P. R. J. Österg̊ard, S. Szabó, Elementary p-groups
with the Rédei property, International Journal of
Algebra and Computation 17 (2007), 171–178.

[6] S. Szabó, Nonfull-rank factorizations of finite
elementary 3-groups, International Electronic Journal
of Algebra 3 (2008), 96–102.

[7] S. Szabó, Verifying Rédei’s conjecture for p = 13,
Mathematics of Computation 80 (2011), 1155–1162.

[8] E. Tomita, T. Seki, An efficient branch-and-bound
algorithm for finding a maximum clique, Lecture Notes
in Computer Science 2631 (2003), 278–289.

94

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Community detection and its use in Real Graphs

András Bóta
Department of Computer

Science
University of Szeged, Hungary

bandras@inf.u-
szeged.hu

László Csizmadia
Department of Computer

Science
University of Szeged, Hungary
cheeseme@freemail.hu

András Pluhár
Department of Computer

Science
University of Szeged, Hungary
pluhar@inf.u-szeged.hu

ABSTRACT
We survey and unify the methods developed for finding over-
lapping communities in Small World graphs in the recent
years. The results have impact on graph mining; we give
some demonstration of this.

General Terms
Theory

Keywords
data mining, graphs, communities

1. INTRODUCTION
The discovery of Small World graphs has changed the direc-
tion of interest in graph theory profoundly. These graphs
are different from those that were studied before, and also
the questions that were asked about those. It is not easy to
collect the information to build such a graph, or give models
to generate it. The sheer size of the real problems prohibits
most of the time consuming algorithms, so the researcher
has to fall back on simpler heuristics, sometimes derived
from physical intuition [3, 5, 20]. Following the usual nota-
tion, a graph G has vertex set V (G), edge set E(G). If the
later one consists of ordered pairs, then G is directed, and
an edge might be also weighted.

An intriguing question is the classification of vertices of a
graph. One can consider the usual clusters and also over-
lapping sets, that we call communities. Here we concentrate
on the possible definitions, search and use of communities.
While for clustering both the top down and bottom up al-
gorithms are used for defining and finding the classes, all
known algorithms for communities are bottom up.

2. SOME ALGORITHMS
Here we consider only three algorithms. The selection is
arbitrary, although has some justification. Maybe the first
algorithm that was used for finding communities is the N++.

However, since we could get no permission to use the data set
it was designed for, it has not been published yet in English.
After that several similar algorithms were proposed; unfor-
tunately the qualities of implementations differ so it is not
easy to compare them. The k-Clique percolation method
was the first widely known algorithm, which was also ap-
plied to real world problems. Edge clustering is the third
algorithm we mention; it has mainly theoretical interest.

2.1 The N++ algorithm.
[23, 11] It is a generic algorithm, with arbitrary functions

f : 2V (G) × V (G) → R

and c : N → R. Here f(A, x) describes the strength of a
community A with a vertex x. Then the algorithm joins x
to A if f(A, x) ≥ c(|A|). The Build routine gets the first
approximation of communities K in a bottom up way.

The pseudo-code of Build

begin(Build)

Input G, k, c (max k-size c-communities)

Let K := V (G) (nodes are communities.)

For i = 1 to k

∀A ∈ K, x ∈ V (G) if f(A, x) ≥ c(|A|) then put A∪ {x} into
K.

Remove all A ∈ K, for which A ⊂ B ∈ K, and A �= B.

Print K, “c-communities of G up to size k.”

end(Build)

After running Build, we use Merge to glue communities
that are almost identical. Let C be a graph, where V (C) =
K, and (A, B) ∈ E(C) if A ∩ B is “big” then changes K to
(K \ {A, B}) ∪ {A ∪ B}. Then the components of C are
declared to be the communities. The practice suggested the
following set-ups. The big means the 60% of the smaller
set. The function f(A, x) depends on the number of paths
with length one and two from x to A. That is to get the
communities containing x, it is enough to search N++(x) :=
N(N(x)).

95

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Some similar methods are listed in [13].

2.2 k-Clique percolation.
[21] Here a k ∈ N is fixed. After finding all k-size clique in
G, the graph Qk is considered such that the vertices of Qk

are these cliques, and (A, B) ∈ E(Qk) iff |A ∩ B| = k − 1.
Finally a k-community is the unions of cliques of a connected
components.

2.3 Edge clustering.
[22, 25] One chooses an arbitrary clustering on the set of
edges. Then the communities are defined as the set of end-
points of the clusters.

These methods differ in output, i. e. in the type of com-
munities, and in the computing costs. Although the edge
clustering is easy to compute, it has serious drawbacks in
use. (First of all is that the overlap among communities is
maximum one vertex.) The N++ and Clique percolation are
more promising; here the implementation issues are crucial.
For small world graphs both can perform almost in linear
time, which is a natural requirement if one wants to deal
with real problems.1

2.4 A unified view
These algorithms, and those that were mentioned but not
listed, has a common core. Their execution consists of two
steps. In the first a hypergraph F = (V,H) is defined (and
computed), where V = V (G), the original point set of the
graph G, and H ⊂ 2V . The elements of H can be consid-
ered as the building blocks of the communities. In the second
step one endows the set H with an appropriate d distance
function and thereby establishes a metric space M = (H, d).
Then a chosen clustering algorithm is executed on M, yield-
ing a set of clusters C. Finally, the arising clusters are associ-
ated to the subsets of V such that Ki = ∪H∈Ci∈CH, where
Ki, the ith community corresponds to Ci, the ith cluster
and Ki is just the union of those hyperedges that belong to
Ci.

In the case of the mentioned algorithms H consist of vertex
sets of the small dense subgraph, k-cliques and the edges,
respectively. The distance functions are represented by an
appropriate graph D, take the value one if there is an edge,
infinity otherwise. In the first case (Ki, Kj) ∈ D if |Ki ∩Kj |
is big enough, in the second if |Ki ∩ Kj | = k − 1, while we
left this as a parameter in the third case.

3. EVALUATION
Since more or less all community (or cluster) definitions are
arbitrary [18], there are several ideas to measure their good-
ness. This is a crucial point and naturally the viewpoint of
researches differ. There are direct and indirect methods to
assess the usefulness of communities, the following list is far
from being complete.

3.1 Appearance, parametrization
First of all, one has to run the algorithms, get the out-
puts and possible make mathematical predictions for certain

1This means millions of vertices. The N++ available in the
Sixtep software, while the Clique percolation in the CFinder.

graph classes. That is an important factor is the speed of
these algorithms. However, it is not easy to compare the
real speed of these algorithms since it depends strongly on
the implementations and test graphs (being real or theo-
retical). Definitely all three algorithms, and perhaps most
algorithms in that family we described in subsection 2.4 are
fast, and designed to solve huge problems. In subsection 3.4
we recur to this problem, and report some date on time and
a goodness measure (modularity) of the solutions.

The clique percolation method is appealing from both theo-
retical and practical view. For Erdős-Rényi random graphs
the clique percolation process is thoroughly studied and well
understood, [6]. It was reported to be useful also in practice,
[1]. However, it sometimes gives too large communities and
the parametrization is elusive, since one has to decide for
which value k to be chosen?

The N++ algorithm looks arbitrary, and do not yield for the-
oretical investigations. Its main advantages are the speed,
the small diameter of the communities and its robustness.
The edge clustering methods are not well studied or tested
in practice. Their inherent problem is that communities de-
rived this way may have only one common element, what is
too restrictive in real graphs.

We tested on these algorithms on some benchmark graphs,
let us illustrate our findings on the famous Zachary graph,
see [26]. This is a friendship graph of a karate club that
split into two parts, A and B. Part A is centered around
their Japanese master, while part B is led by the club ad-
ministrator. The the clique percolation method gives three
communities for k = 3 with sizes 3, 6 and 24. For k = 4
there are also three communities, the sizes are 4, 4 and 7,
while for k = 5 there is one community of size six. Here
a blend of k = 3 and k = 4 seems to be appropriate, and
the communities are on the two sides of border where the
split occurred. The N++ algorithm results in twelve com-
munities, four of size three, five of size four, one of size six,
and two of size seven. All but one communities are entirely
either in A or in B. One might argue that the club was
always one the verge of demise that happened at the end.

3.2 Graphical.
Another way is to compare the communities with some vi-
sualized form of the graph; this was the most common ap-
proach in the early publications. Indeed, the clustering
methods provide classes that conform the eye. Assessing
communities (permitting overlapping) are harder, since vi-
sualization is not an obvious task anymore. Some ideas,
like showing the intersection graph of communities can help.
However, this approach has certain limits; it works only for
small graphs and it is always subjective.2

Another possibility is to draw some derived graphs. Among
these the intersection graph H of the communities performed
best. Here the vertices are the communities of G, and an
edge is drawn if the communities associated to the vertices

2For graph visualization the so-called force directed algo-
rithms performed best. However, these usually take O(n2)
time that prohibit the use when n is several thousand or
million.

96

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

has a non-empty overlap. That is I(G) = (V (H), E(H)),
where V (H) = K and (Ci, Cj) ∈ E(H) if |Ci ∩ Cj | > 0.

Again, for the Zachary graph the clique percolation method
gives an unconnected graph H. The intersection graph H
based on the N++ algorithm is more delicate. It consist
of two dense subgraph with one common vertex x. A four
element community corresponds to vertex x, and this com-
munity contains the master (1), the administrator (33) and
the vertices labeled by 3 and 9. The community was almost
a clique, except that the master and the administrator were
not friends. When the split occurred, 3 and 9 ended up in
different parts destroying completely the only community
that connected the two parts. One might speculate that the
friendship of 3 and 9 was responsible for the cohesion of the
club, and when it could not take more pressure they took
parts which meant the end of the club, too.

3.3 Random Small World Graphs
There are several ways to generate random graphs having
similar properties that of real Small World graphs, [2, 8].
From those we tried out the Preferential Attachment (PA)
and the Vertex Copy (VC) models. In both of these mod-
els the graph is build step by step, while the neighborhood
of the newly arrived vertex x is chosen differently. In the
PA model the new vertex x brings k new edges, and the
other end of these edges are at an old vertex y with prob-
ability proportional to d(y) and taken independently from
each other. In the VC model an old vertex s is selected uni-
formly, and the new vertex x takes vertices independently
from N(s) with a prescribed probability p.

The results are far from being conclusive, and indeed tell
more about the models (PA and VC) than the community
algorithms (CPC, N++). Note, that a different approach,
using random intersection graphs, is investigated in [24].3

Here we illustrate it on two sets of graphs that approxi-
mately belong to the same category. For all these the num-
ber of vertices is 100, G1 and H1 were generated by the PA
model, |E(G1)| = 192, |E(H1)| = 358 while G2 and H2 come
from the VC model with |E(G2)| = 151 and |E(H2)| = 378.
The #C and #CO mean the number of clusters and com-
munities, while the column with head k contains the number
of communities of size k. At the case of CPM the column k
refers to the parameter of the algorithm instead, that is the
algorithm was run for k = 3, 4, . . . The number of clusters
were determined by a modularity maximization algorithm
(a version of Newman), see the next subsection.

Graph and
Method

#C #CO 3 4 5 6 7 > 7

G1 / CPM 10 7 7

G1 / N++ 10 9 5 0 0 2 1 1
G2 / CPM 9 17 13 4

G2 / N++ 9 22 8 7 2 4 1 0

H1 / CPM 6 10 7 3

H1 / N++ 6 37 5 2 3 9 7 12
H2 / CPM 6 24 4 8 6 6

H2 / N++ 6 26 8 3 2 5 1 7

3For intersection graphs the CPM gives too large commu-
nities sometimes. A possible remedy is to fix the diameter,
like in N++.

3.4 Modularity.
The Newman modularity [20] is the following function of a
graph G and its partition:

Q =
1

2m

∑
ij

[
Aij − kikj

2m

]
δ(ci, cj),

where m = |E(G)|, Aij is the adjacency matrix of G, ki is
the degree, ci is the cluster of the ith vertex, and δ(ci, cj)
is the Kronecker symbol. The clustering algorithms may be
based on some mathematical/physical heuristics like edge-
betweenness (EB), eigenvectors (EV), label propagation (LP),
spin glass (SG), walk trap (WT), or try to maximize the
modularity function itself on the set of all partitions with a
greedy algorithm (Gr). The formula can be generalized to
communities [19]. One write sij instead of δ(ci, cj), where
sij is an arbitrary similarity measure between vertices i and
j. (In [19] the ui is a probability distribution of i over the
communities, and sij = 〈ui, uj〉, but it could be ‖ui − uj‖
form any norm.) On the other hand, it is possible to get
communities by maximizing the modularity function. The
findings of [16] show the cluster and community structure
cannot be measured on the same scale, some additional
weighting must be introduced to solve this. The algorithms
were tested for some graphs, we illustrate the results on the
already mentioned Zachary graph. The clusterings are fol-
lowed the Clique Percolation (CPM) with clique sizes k = 3
and k = 4, and N++ with its default parameters. The run-
ning time is in seconds, #C stands for the number of clusters
or communities, whatever it applies.

Method Modularity Running
time

#C

EB 0.4013 0.0100 5
EV 0.3727 0.0000 3
Gr 0.3807 0.0000 3
LP 0.4020 0.0000 3
SP 0.4063 1.1500 6
WT 0.4198 0.0000 4
CPM 3 0.2438 0.012 3
CPM 4 0.2557 3

N++ 0.1947 0.6690 12

One can evaluate cluster/community algorithms in indirect
ways. That is by taking a problem in which the communi-
ties might have predictive value, and check the usefulness
of these. We have observed dependencies among functions
in some social graphs (telecommunication, friendship, Eras-
mus contracts etc.), and practically all methods provided
useful hints. However, here the use of communities greatly
outperforms the methods which use only clusters.

3.5 Refinements, time and orders.
One can conduct similar studies like the graphical method if
have some functions that are defined on the vertices or the
edges. Again, we have seen some highly subjective but still
robust phenomena that might deserve to be mentioned.

First of all, the clusters are usually much bigger than the
communities, and their number is less.

97

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

The number of communities might follow power law, al-
though even to test this is impossible.

The communities are usually within the clusters, and give a
fine structure of those larger classes. However, the reverse
direction is also detected, the clusters might give informa-
tion on communities. To be more precise, the most interest-
ing communities are those ones in which elements belong to
several clusters.

In social graphs we confirmed the role of the weak links
described in [14], and also tested the different algorithms.
The communities given by N++ are containing strong edges
almost exclusively, while most of the weak edges are among
communities. On the other type of small world graphs, the
so-called technical graphs4 there are no such effects. We
used data from [17]. (The CPM does not give good results
with any k, perhaps its performance is too sensitive to the
measurement errors, missing data.)

The social graphs might have natural vertex attribute, the
time when a vertex has been joined to the net. This or-
der may not be manifested in the clusters if one considers
the whole graph, but shows remarkable coincidence when re-
stricting the graph to the neighborhood of a fixed vertex. In
that case the clusters usually can be interpreted with some
interval of time or spatial restrain. Note, that communities
may cross the borders of clusters.

3.6 Weights.
Dealing with weighted graphs is difficult. It turns out that
for the indirect methods the numerical results are more reli-
able. While all these methods can be extended to weighted
graphs, the performance of them is little known [7].

In the rest we outline a model which is an example for indi-
rect evaluation. The infection models are central in applica-
tions of real graphs [4], but to build appropriate ones is far
from being trivial. The main points are (i) which model to
choose, (ii) what are the significant variables and (iii) how
to decide the values of the parameters. Our investigations
concentrated on two problems in corporate banking, default
(failing in paying debt) [9] and delay (in paying debt) [10].
We have to stress, although the two problems look simi-
lar, there are subtle differences. The main similarity is that
these processes can be considered as some kind of “infec-
tious disease.” However, one has to be careful since financial
difficulties may come from intrinsic reasons. (The rise or
fall of the economic might be accounted by taking a ficti-
tious node.) So the task is to devise a methodology that,
given the a priori probabilities of some problem (say the
default), estimates the a posteriori probabilities. The differ-
ence of these probabilities is recognized as network effect in
the certain problem. The characteristics of the problem (e.
g. no recovery, the probability of transmission is not con-
stant) exclude the SIR or SIS models that play central role
in Epidemiology. The best suited model is the Independent
Cascade.

4In social graphs the presence of edges (x, y) and (x, z) in-
creases the conditional probability of the the edge (y, z),
while in the technical graphs this probability is decreased in
that case.

3.7 Independent Cascade Model (IC)
This model is due to Domingos and Richardson [12], but an
equivalent is in [15]. Here an edge weighted graph G is given,
where to the edge (v, w) a probability pv,w is associated. The
process of infection goes as follows. In the 1st step the set
of infected vertices F1 considered active, that is F1 = A1.
In general for a vertex w ∈ V (G) ⊂ Fi−1 gets infected with
probability p =

∏
v∈Ai−1

pv,w, and in that case w ∈ Fi.

Note that the infected vertices may transmit the disease
only in the very next step, that is Ai = Fi \ Fi−1. If for
an i Fi = Fi−1, then the process halts.

3.8 Weighting and optimization.
First of all, one has to modify the IC model for effective
use. Since the probabilities are assesses by simulation, it
is natural to subject the a priori infection to this, too [9].
While the modified IC model provides extreme flexibility
for modeling complex system, it is also very difficult to find
appropriate transmission probabilities, or even an measure
that tells from the better from the worse. The weights are
assigned by a standard AI method, making a training set
and a test set on the past data. A possible solution for the
measurement is the use of the gain curve.

The vertices of the graph are ordered monotone decreasing
way by their infection computed on the training set. Let
w1, . . . , wn be the values of the same vertices given in the
test set. Then the function gain(x) =

∑
i≤x wi/

∑n
i=1 wi;

and
∫ n

x=1
gain(x)dx should be maximized.

An estimation for an edge probability pv,w is based on the
vertex and edge attributes that are available in the data.
To maximize the performance measured by the gain func-
tion, a systematic search was done to try out the possible
combinations of the reasonable functions of the considered
variables. This included linear, quadratic, logarithm, expo-
nential and sigmoid functions. The final aggregation of these
transformed values was also treated this way. To find the
best parameters of this function, a grid search was used.

3.9 Results.
Here we single out only one experiment out of several ones.
A thorough study was executed on the data of one of the
largest Hungarian bank (OTP), and the findings published
in [10]. Here the estimation of default probabilities of certain
clients (small and middle enterprise sector) was the goal.
The OTP Bank Corporate transaction database was used,
where the graph building period was from August 2008 to
April 2009 (6 months) and the infection period was from
February 2009 to April 2009 (the last 3 months from it).
For default event observation two periods were chosen: a
longer one from May 2009 to April 2010 (12 months), and a
shorter one from May 2009 to April 2010 (3 months).

I. It turned out that shorter periods (3 month) gave better
models than those were based on longer periods.

II. The direction of the edges counts, it should be taken as
buyer - provider, i. e. if x sends money and y receives it
than (x, y).5

5There is some effect even when the edges are taken indi-

98

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

III. The variables and findings worth considering follow.

(i) Community information. (If the edge belongs to a com-
munity?)

(ii) The edge (x, y) inherits the variables of x (but not y).

(iii) Relative traffic, that is the transfer of the edge divided
by the sum of all incoming transfer.

(iv) The age of the client. (How old is the company?)

(v) Behavioral types. (queuing on the account, overdraft
etc.)

Even though, the most significant variables are the ones
listed in (i) and (iii).

Based on this, we found an expected 3-4 to even 10-12 times
lift in the different segments [10]. The fact that a vertex
x is in a same community with an infected increases the
chance of x’s infection by a factor three. Note that there
were similar findings in [9] on different data. However, in
[9] the parameter values for the IC based model were set
by using trial and error, while in [10] a more sophisticated
search was done. The computations were carried out by the
use of Sixtep software.

4. ACKNOWLEDGMENTS
The first author was partially supported by the the joint
grant of Hungarian Government and the European Union
in the framework of the Social Renewal Operational Pro-
gramme, project no. TÁMOP 4.2.2-08/1-2008-006, while
the third author was partially supported by the Hungar-
ian National Science Foundation Grants OTKA K76099 and
also by the grants TÁMOP-4.2.2/08/1/2008-0008 and TÁMOP-
4.2.1/B-09/1/KONV-2010-0005.

5. REFERENCES
[1] B. Adamcsek, G. Palla, I. J. Farkas, I. Derényi, and

T. Vicsek. Cfinder: Locating cliques and overlapping
modules in biological networks. Bioinformatics,
22(8):1021–1023, February 2006.

[2] R. Albert and A. L. Barabási. Emergence of scaling in
random networks. Science, 286:509–512, 1999.

[3] R. Albert and A. L. Barabási. Statistical mechanics of
complex networks. Reviews of Modern Physics,
74(1):47–97, January 2002.

[4] M. Boguná, R. Pastor-Satorras, and A. Vespignani.
Absence of epidemic threshold in scale-free networks
with connectivity correlations.
arXiv:cond-mat/0208163v1 [cond-mat.stat-mech],
2002.

[5] B. Bollobás. Modern Graph Theory. Springer, New
York, New York, 1998.

[6] B. Bollobás and O. Riordan. Clique percolation.
Random Structures and Algorithms, 35(3):294–322,
October 2009.

[7] A. Bóta. Applications of overlapping community
detection. In (CS)2 - Conference of PhD Students in

rected. This is due to another network effect, since the edges
are describing an economic interdependence/same sector.

Computer Science, page . , June 2010.

[8] A. Cami and N. Deo. Techniques for analyzing
dynamic random graph models of web-like networks:
An overview. Networks, 51(4):211–255, July 2008.

[9] A. Csernenszky, G. Kovács, M. Krész, A. Pluhár, and
T. Tóth. The use of infection models in accounting
and crediting. In Challenges for Analysis of the
Economy, the Businesses, and Social Progress, pages
617–623. , November 2009.

[10] A. Csernenszky, G. Kovács, M. Krész, A. Pluhár, and
T. Tóth. Parameter optimization of infection models.
In (CS)2 - Conference of PhD Students in Computer
Science, June 2010.

[11] L. Csizmadia. Recognizing communities in social
graphs. MSc thesis, University of Szeged, Hungary,
2003.

[12] P. Domingos and M. Richardson. Mining the network
value of costumers. In 7th Intl. Conf. on Knowledge
Discovery and Data Mining, pages 57–66. ACM,
August 2010.

[13] S. Fortunato. Community detection in graphs. Physics
Reports, 486(3-5):75–174, February 2010.

[14] M. Granovetter. The strength of weak ties. American
Journal of Sociology, 78(6):1360–1380, May 1973.

[15] M. Granovetter. Threshold models of collective
behavior. American Journal of Sociology,
83(6):1420–1443, May 1978.

[16] E. Griechisch. Comparison of clustering and
community detection algorithms, the extension of the
modularity. In (CS)2 - Conference of PhD Students in
Computer Science, June 2010.

[17] C. A. Hidalgo, B. Klinger, A. L. Barabási, and
R. Hausmann. The product space conditions the
development of nations. Science, 317(5837):482–487,
July 2007.

[18] J. Kleinberg. An impossibility theorem for clustering.
In Advances in Neural Information Processing Systems
(NIPS) 15, 2002.

[19] T. Népusz, A. Petróczi, L. Négyessy, and F. Bazsó.
Fuzzy communities and the concept of bridgeness in
complex networks. Physical Review E, 77(1):016107,
January 2008.

[20] M. Newman. The structure and function of complex
networks. arXiv:cond-mat/0303516 v1, 2003.

[21] G. Palla, I. Derényi, I. Farkas, and T. Vicsek.
Uncovering the overlapping community structure of
complex networks in nature and society. Nature,
435(9):814–818, June 2005.

[22] A. Pluhár. On the clusters of social graphs based on
telephone log-files. Research Report, 2001.

[23] A. Pluhár. Determination of communities in social
graphs by fast algorithms. Research Report, 2002.

[24] D. Stark. The vertex degree distribution of random
intersection graphs. Random Structures and
Algorithms, 24(3):249–258, May 2004.

[25] T.S.Evans and R.Lambiotte. Line graphs of weighted
networks for overlapping communities.
arXiv:0912.4389v2 [physics.data-an].

[26] W. W. Zachary. An information flow model for
conflict and fission in small groups. Journal of
Anthropological Research, 33:452–473, 1977.

99

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

100

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

GREEDY HEURISTICS FOR
DRIVER SCHEDULING AND ROSTERING

Viktor Árgilán, Csaba Kemény, Gábor
Pongrácz, Attila Tóth

Institute of Applied Sciences
Juhász Gyula Faculty of Education

University of Szeged
Boldogasszony sgt. 6, 6725 Szeged, Hungary

{gilan, kemeny, pongracz, attila}@jgypk.u-
szeged.hu

Balázs Dávid,
Institue of Informatics

Faculty of Science and Informatics
University of Szeged

Árpád tér 2., 6720 Szeged, Hungary
davidb@inf.u-szeged.hu

ABSTRACT
In this paper, we introduce greedy methods for both the driver
scheduling and the driver rostering problems. The methods were
created to be efficient parts of a decision support system in public
transportation meeting the demands of an industrial application by
being flexible with adjustable settings. The developed algorithms
provide good results for real life instances in acceptable time.

Keywords
crew scheduling, crew rostering

1 INTRODUCTION
Driver scheduling and rostering are important problems arising in
public transportation. Based on a feasible vehicle schedule, driver
scheduling determines the shifts for each day of the planning
period. This is followed by driver rostering, where the shifts are
assigned to drivers. All these steps are limited by different rules
and constraints, usually defined by several authorities
(government, EU, etc.).

Both the driver scheduling and the driver rostering problems are
NP-hard, but several different approaches have been introduced in
literature for the problems above [4]. Solving the problems by
formulizing exact mathematical models [2], using constraint
programming [3,5,9], or evolutionary algorithms [6,7,8] give
good theoretical solutions. However, not all of the above methods
can be applied efficiently in practice due to the size of the
problem. The planning period we have to consider is usually 1-2
months, which makes the size of the problem even larger, than
using the methods for only several days.
The above problems are usually considered as parts of decision-
support systems [1], which allows users to create several different
solutions for the problem. For this, they need to set different

parameters, compare them, or even re-calculate some results of
the system, meaning that the algorithms will be executed several
times. Since real life applications of these problems in a decision
support system require a running time of a couple of minutes
only, the applied algorithms need to have a fast running time. In
addition to this, the quality of their given solution is also an
important aspect.
The above requirements lead to the introduction of heuristic
approaches, which can result in an efficient solution in adequate
time. Our goal was to introduce fast heuristic algorithms for both
problems, which work effectively on real life data, giving a
“quasi-optimal” solution. Greedy heuristics are classical methods
of algorithm design, and are known to have an extremely fast
running time. Though they usually fail to achieve global
optimum, we will show through our test results that they can be
applied efficiently on the driver scheduling and rostering
problems, and give a good solution for real-life instances.
The structure of this paper is the following: first, we deal with the
driver scheduling problem, followed by the driver rostering
problem. In both cases, we first present the traditional IP
formulation, and show why this type of approach is unusable on a
real life instance. Choosing other models would have been
possible, but the problems arising from the size of the IP model
also exist at different representations as well. After this, we
propose greedy methods for the problems. Finally, we present the
results of the methods on a real life instance, and draw the
conclusions.
The results of our algorithms are presented on instances provided
by the Szeged City Bus Company (Tisza Volán ZRt, Urban
Transport Division).

2 DRIVER SCHEDULING
The input of our driver scheduling method is a feasible vehicle
schedule. This contains the properties of the assigned buses and
the basic properties (starting time, ending time, starting place,
ending place) of the vehicle tasks. Driver scheduling uses the
tasks of these vehicle schedules to define shifts with minimizing
the cost of assigning a task to a certain shift. The scheduling is
always produced for a single day. Only those rules are considered
which concern only the daily duty so the optimization works on
the planning period sequently day-by-day.

Two tasks can be scheduled to the same shift, if they satisfy
certain basic rules. The tasks cannot overlap in time, and two
tasks scheduled after each other must be geographically sequential

101

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

(the ending location of the first one has to be the same as the
starting location of the second one). If these locations are
different, a new task has to be introduced between them to satisfy
this geographical condition. However, there are other conditions
for the problem (given by the EU, government or company
regulations), which are more complicated.

The most important rules for a daily shift are the constraints of
maximal working time, the length and frequency of the breaks,
and the number and type of possible resting locations (longer
breaks can only be spent at specific resting places). Other special
rules may apply apart from the above mentioned ones, but these
vary from company to company.

The objective function minimizes the number and cost of the
shifts which give the total cost.

Literature usually discusses two different solution methods. The
first is Generate and Selection Approach (GaS), which initially
generates sets of the candidate shifts. The size of these sets may
vary from a couple of 100.000 to even more then several
1.000.000. The shifts, giving the best solution, are selected from
these sets. This problem can be reduced to the set covering or set
partitioning problems, and formulized as the following:

Minimze

��
==

+
n

j
j

n

j
jj xwxcw

1
2

1
1

subject to

1

1, 1,2,...,
n

ij j
j

a x i m
=

≥ =�
{ }0,1 , 1,2,...,jx j n∈ =

where

n = the number of candidate shifts

m = the number of tasks

xj = shift variable, xj = 1 if shift j is selected and 0 otherwise

cj = cost of shift j

aij = 1 if tasks i is covered by shift j, 0 otherwise

w1 and w2 are weights

There are several efficient methods to solve the problem above.
However, the use of this approach for a real-life instance (like in
our case: Szeged, Hungary: 170.000 inhabitants, ~2700 trips on a
usual workday) results in several million different shifts for a day.
In addition to this, the applied rules also increase the complexity
further. Because of the above observations, finding a feasible
solution is really hard. The number of candidate shifts is large,
and generating the problem is a slow process because of the high
number of rules. Solving the IP problem above with such a size
also requires significant running time.

The other solution method that can be used for the problem is the
Constructive Approach. Instead of generating all the possible
shifts, this method constructs a single solution for the problem,
while it tries to minimize the cost. Our algorithm uses this
approach.

The main requirement we considered when we created our
method was that the solution algorithm should be adjustable
according to the needs of the user, with modifyable methods of
solutions using different settings and parameters. The basis of our
method based on these observations is a controlled greedy
approach, which can give an adequate, feasible solution in a
couple of seconds, according to the needs of the user.

The main idea is to divide the driver scheduling into sequential
substeps, where different optimization methods can be used and
combined. By this, good flexibility can be reached, since it is
quite easy to adjust the process to the expectations. It is even
possible to improve the output of a step before the next one by
hand, as sometimes a professional human mind can see what an
optimization algorithm could not find.

The process goes through the following steps:

1. Creating work-pieces. This makes work-pieces by
pulling the tasks together by the possiblity of the driver
reliefing with different rules.

2. Creating pre-shifts. This generates initial solutions,
called pre-shifts, ommiting the difficult rules.

3. Cutting. This step splits the pre-shifts into smaller
feasible parts considering all the rules.

4. Joining. In this step the shift parts are joined together
producing longer feasible shifts.

5. Refining. It improves the cost of the solution by
changing work-pieces between the shifts.

6. Finishing. Finally this step inserts all required duties
into the shift and define an idle activity for all idle time
measuring the final cost of the shifts.

The aim of step 1 is to reduce the size of the problem. There are
consecutive vehicle tasks, that have to be carried out by the same
driver (because there is no time between the tasks to change
drivers, or the tasks simply belong together, etc.), meaning that
these can be replaced by one driver task with starting parameters
of the first task and ending parameters of the last task. Using this,
we can define a work-piece as one or more consecutive tasks of a
vehicle carried out by the same driver. Determining work-pieces
can be done with a simple method in linear time.

Step 2 generates the initial shifts. The main idea is to schedule all
the work-pieces into shifts, while we consider only some basic
constraints (eg. the resulting shifts cover all the events without
overlapping), but the shifts do not necessarily satisfy all the given
rules. These shifts are well-optimised, and can be generated in
reasonable time. The following steps of our process transforms
them to get a feasible solution regarding all given rules.

The task of step 3 is to create feasible pieces considering the
rules. The infeasibility of a pre-shift can be derived mostly from
two reasons. The first is the problem with its length, meaning that
the pre-shift is too long and conflicts the constraints of maximum
working time or minimum resting time. The other reason is that
there is not enough time inside the pre-shift for breaks as defined
by the rules. Both problems can be solved by cutting the pre-shifts
into smaller parts. At this point, several strategies can be applied,

102

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

which are based on the length, structure, cost or on the traffic load
of the different periods of the day. The main point of the previous
two steps is to generate effectively shift parts which are useful
producing feasible shifts.

Step 4 joins the resulting shift parts together, applying also
different strategies. Since the resulting shifts of the previous
phase are all feasible with respect to every rule, they must also
remain feasible after a join. For measuring the fitness of the
joining of two shifts a new joining-fitness function is introduced.
The fitness of a joining depends on two main factors:

• how close the two parts are to each other in time (the
difference of the starting time of the second shift and
the ending time of the first shift)

• wheter the starting location of the second shift and the
ending location of the first shift are the same, or
different (if they are same, then a connecting activity is
not needed, and the driver does not change vehicle, so
the vehicle used on the last task of the first part and the
vehicle on the first task of the second part are the same)

The joining of two parts can be executed with two different
greedy methods, or also according to the load of the different
periods of the day.

For step 5 a complete shift is given as an input, so the number of
shifts is not changed further at this step. However, the cost of the
scheduling can be decreased by exchanging a pair of proper
work-pieces from two different shifts. This type of change is made
only if the sum of the costs of the two shifts can be reduced this
way. Rules also have to be considered, these changes cannot
violate them in any shifts. Refining can also be executed by using
several different methods, like a local search or globally
examining all shifts.

Step 6 is a deterministic method, which inserts other events
defined by the rules into the shifts. The resulting shifts of the first
5 steps only contain vehicle tasks, and tasks where the driver
travels between the geographical locations of the vehicle tasks. So
until this point the optimization is quite general and more or less
independent of the local circumstances. However, a final shift
must contain all the obligatory duty defined by the company, and
also all idle time of the driver must be assigned to an acticity. We
first assign those tasks, which have to be carried out at a fixed
time in the schedule of a driver (eg. passengers getting on and off
exactly before and after a run). After the assignment, the
remaining activities are inserted which have no specified time
interval in which they have to be carried out (break,
administration, maintenance, etc). Finally, special idle-tasks are
assigned to all remaining unused inner time of the shift depending
on its length.

During the optimization process described above, the total cost of
a shift cannot be computed before step 6. A shift has to contain
many different driver activites in addition to vehicle tasks
(administration, getting on/off the vehicle, etc.). These can only
be determined once the shifts are complete, and an actual driver is
assigned all his daily shifts. Because of this, only the vehicle
tasks, travelling time of the driver and idle time of the driver are
taken into consideration during the driver scheduling phase. A
cost is assigned to every gap between every two consecutive tasks

by statistical analysis. The cost of these periods is calculated
using the present practice of driver shifts used by the company.

Let T be the set of vehicle tasks, A be the set of other activities
(T∩A=∅), S’ be the scheduling of the company and s’∈S’ a shift.
An idle time pn⊂s’ is a time period of the shift defined by two
consecutive vehicle tasks ti, ti+k containing other driver activities
such that s’=(…,ti,ai+1,ai+2,…,ai+k-1,ti+k,…) where t∈T, a∈A and
pn=(ai+1,ai+2,…,ai+k-1). Then the category of this period defined by
its length:

5

st et
rank i k it t

p +� �−= � �
� �

where tst is the starting time and tet is the ending time of vehicle
task t. This means a rank in a 5 minutes time scale R. The cost of
this period is calculated by summing the cost of the inner
activities:

1
cos

1

i k
t cost

j
j i

p a
+ −

= +

= �

where acost is the cost of activity a∈A.
The cost of a time period Rm in the scale calculated by the average
of the cost of the idle periods pk categorized to this rank.

cos 1

mR
cost
k

t k
m

m

p
R

R
==
�

where each pk
rank = m.

Using this scale the cost of a shift calculated as a weighted sum of
the vehicle tasks, the traveling and the idle periods.

() ()
' 1

' 1

(')
i

s
et st et st

p
t T a A i

c s t t a a R
−

∈ ∈ =

= α ⋅ − +β⋅ − + γ ⋅� � �

where A’={a: atype=TRAVELLING} is the set of the travelling
activities, pi-s are the idle periods in shift s’∈S’ and α, β, γ are
weights.

The final cost can be calculated for the shifts after step 6 of the
process. Since every shift activity and idle time has a cost
category defined by the company, the cost of a shift is the sum of
the costs of the events it contains.

()
1

c
s

cost
i

i

s e
=

=�
where e∈T∪A is an event in shift s.

Notice that at this point we do not take into consideration the
overtime and undertime. To measure the over- or undertime of a
driver we need the driver rostering. The average daily working
time of a driver is calculated according to his contract and the
time interval over which we are scheduling (two months in our

103

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

case). That is why the quantity of the over- and undertime
depends on the rostering and not the scheduling of a single day.

Besides the adjustable parameters (e.g. the required length of a
break) the flexibility of the method is mainly provided by steps 2,
3 and 4, where the user can combine different methods, and
manually alter the result of the different methods after every step.
Since the algorithm solves the driver scheduling problem for one
day in a few seconds, solving the problem for the whole planning
period takes only a several minutes.

3 DRIVER ROSTERING
The input of the driver rostering problem are shifts which are
given as the output of the driver scheduling. The output is a driver
roster. The algorithm also needs certain information about the
drivers and the driver rules.

Driver constraints are given rules and regulations (mostly by the
EU, and the local government). The most important of these rules
are:

1. The number of maximum weekly working hours of a
driver must be respected.

2. The required minimum weeky resting time of a driver
must be respected.

3. The number of minimum resting hours of a driver
between two consecutive shifts must be respected.

4. Drivers cannot work consecutively for more than k days
within a given timeframe.

5. The number of minimum resting days within a mont
must be respected.

6. Each driver has to be assigned at least r number of
Sundays as resting days in each month.

The shifts are given by a driver scheduling method for the total
planning period, and each shift has to be assigned to exactly one
driver, considering the rules introduced above. A planning period
can be of arbitrary length, either a couple of weeks or months, or
even an entire year.

We introduce two main approaches to driver rostering: first, we
examine a traditional IP model of the problem, and analyze its
constraints. Then a greedy rostering method is introduced for the
driver rostering problem, which solves the problem with a fast
running time, and gives a good quality solution.

3.1 IP approach
The problem can be represented as an IP model, where all shifts
have to be executed by a driver exactly once, and the constraints
regarding drivers can not be violated. The objective function of
the problem also tries to minimize the number of drivers, the
under- and overtime. The driver rules give the constraints of our
model, and the objective function minimizes the sum of the cost
of the rostering.

Let

{ }
1

n

j j
S s

=
=

be the set of shifts for the whole planning period, Sm the set of
shifts of month m, Sw the set of shifts of week w, and Sd the set of
shifts of day d, Sd⊂S, Sw⊂S, Sm⊂S, where n is the number of shifts
of the planning period. Let

{ }t
iisS 1==

be the set of all drivers, where t is the number of drivers.

Let φ:S→Rv be a function which describes the attributes of the
shifts using a real vector of lenght v, and let D be the set of
drivers and function ϕ:D→R determine the contract type of each
driver. The problem is to find h:S→D assignment where we
minimize the cost:

()() minc h s → .

For an assignment h let

1, if h

0,otherwise

j i

ij

(s) d
x

=�
= �
	

where i denotes the driver index, and j denotes the shift index.

Using the rules described above, the IP model of the driver
rostering is:

60

1 1
j w

j ij

s S

w

i w wt(s) x maxweekwt

(i t , w n)

∈

∀ ∀ ⋅ ≤ ⋅

≤ ≤ ≤ ≤

�
 (1)

where wt(fj) is the working time of shift fj given in minutes, nw is
the number of shifts in week w, and maxweekwt is the maximum
allowed weekly working hours for a driver.

7 24 60 60

1 1
j w

j ij
s S

w

i w wt(s) x minweekwrt

(i t , w n)

∈
∀ ∀ ⋅ ⋅ − ⋅ ≥ ⋅

≤ ≤ ≤ ≤

�
 (2)

where minweekrt is the minimal weekly resting time of a driver
given in hours. The product 7⋅24⋅60 gives the length of a week in
minutes.

,

() () 60

0
j k

k j

ik ij
s s S
j k

st s et s minshiftrt

i x x
∀ ∈

≠
− < ⋅

∀ =� (3)

where minshiftrt is the number of minimum resting hours of a
driver between two consecutive shifts. The starting time of the
shift is denoted by st(sk) while the ending time of the shift is
denoted by et(sj).

104

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

(1 , 1)

d contwd
j k d k

ij
s S

i d x contwd

i t d n contwd

+
=∀ ∈

∀ ∀ ≤

≤ ≤ ≤ ≤ −

�
� (4)

where contwd is the maximum number of consecutive working
days allowed in a given term.

days

1 1
j m

ij

s S

i m x (m) minmonthrd

(i t , m numofmonths)

∀ ∈

∀ ∀ ≤ −

≤ ≤ ≤ ≤

�
 (5)

where days(m) gives the number of days in month m, minmonthrd
gives the number of minimum resting days in a month, and
numofmonths gives the number of month of the planning period.

Sunday

sundays

1 1

j m

j q

ij

s S
s S

q

i m x (m) minnumofsunday

(i t , m numofmonths)

∀ ∈
∈

∀ ∀ ≤ −

≤ ≤ ≤ ≤

�
� (6)

where q denotes the Sundays in the given month, sundays(m)
gives the number of Sundays of month m, and minnumofsunday is
the minimum number of Sundays that are needed to be assigned
as resting days each month.

Given the constraints above, our objective function is:

��
= =

→⋅
t

i

n

j
ijij xc

1 1

min

where cij is the cost of driver i executing shift j.

Solving the above model by using an IP solver would give the
optimal solution for the problem. However, a huge disadvantage
of this method is that the running time of the solver grows
exponentially to the size of the problem. Because of this, a data
instance taken from a real-life situation can have a running time
up to several months (a problem of such magnitude has several
million variables). On the other hand, a decision support system
can not apply a solution method with such a slow running time.
This is not acceptable, as companies would like to execute the
methods several times using different parameter settings, and
compare the results to choose the driver roster that fits their
situation the best.

To satisfy the above requirements, a different method is needed,
which gives a near-optimal solution, but has an extremely fast
running time. As mentioned before, greedy-based heuristics are
known for these propterties.

3.2 Greedy algorithm
Greedy algorithms are usually known to provide solution faster
for our problem than other optimization methods. Though it
comes with the cost that the greedy choice property guarantees
only local optimum, but a good pre-processing of the input,

especially a proper selection method for the initial set of drivers
can improve the global solution too.

Initially the driver set is defined. Each driver has a contract type
which defines the working hours for a day in average of a given
time interval (in our case it is two months). Our method uses an
initial set of drivers calculated by a seperate algorithm. This gives
an estimate driver number, considering the existing different types
of driver contracts and uses the number of employed drivers for
the given day as an upper bound As a first step, depending on
their total working time, the shifts can be divided into sets, which
helps in giving this estimation. Usually the resulting number helps
us to achieve a good quality solution, but this estimation can be
greater then the actual number of drivers available for the
company. The second step uses the ratio between these different
contract types. The estimate values are modified, using pre-set
upper bounds: if the value is greater than its upper bound, then it
is decreased to the upper bound, and their differenc is converted
to a different contract type (either with greater, or with smaller
working hours) which can be increased. The ratios of conversion
are in case of 4-, 6- and 8-hours contracts:

• 2 contracts of 4 hours can be converted into 1 contract of
8 hours;

• 3 contracts of 4 hours can be converted into 2 contracts of
6 hours;

• 4 contracts of 6 hours can be converted into 3 contracts of
8 hours.

These conversions can be applied both ways, eg. if the maximum
number of drivers with 8-hour contracts is exceeded, they can be
converted either to drivers with 4-hour or 6-hour contracts.
Considering the total daily working time, the above mentioned
rules can be applied, as they are all equivalent conversions. This
means that for example an 8-hour long shift can either be
executed by a driver with a contract of 8-hours, or 2 drivers with a
contract of 4-hours. The resulting number now can be applied as
an initial input for the number of drivers used by the greedy
heuristic.

Then the rostering algorithm iterates through every day of the
planning period. Each day, the daily shifts are assigned to feasible
drivers, who are chosen according to a certain strategy (fitness,
random).

Let S be the set of shift, and D the set of drivers. Our greedy
algorithm for the driver scheduling problem is:

GREEDY_DR(S,D)
for days i=1..n

S’=unassigned shifts of day(i)
while S’≠∅

sj=Select_shift(S’)
D’=drivers of D, who can execute sj

dk=Select_driver(D’,sj)
assing si to dk

S’=S’\{sj}
end while

end for

The method enables the user to choose between several selection
strategies of the shift (Select_shift) and the driver (Select_driver)

105

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

executing the chosen shift. For example the shifts can be selected
randomly or sequently by the calendar, and the drivers can be
selected randomly, with a first fit approach, or by using a fitness
function minimizing the over and undertime to determine the best
driver for the shift.

Our experience shows that a cost value of driver number
combinations in the search space more or less strictly decreasing,
while the minimal area is well determinable and the direction of
the decrease is easily recognizable in every point. The estimate
values given by our special method in the initial step is close to
this minimal area. Executing the greedy algorithm
(GREEDY_DR) above sequentially, using a neighbour step in the
driver combination (increasing the number of drivers in a contract
type in case of overtime and decreasing in case of undertime) with
an expected lower cost can lead us to a solution closer to the
optimum.

4 TEST RESULTS
The presented methods have been implemented and tested in
Matlab using a general pc, implementations under different
programming environments might give slightly different results.

The running time of the vehicle scheduling method is a few
seconds for a daily schedule, which adds up to 2-3 minutes to a
planning period of 2 months. It can be improved by using parallel
execution. The driver rostering method has a running time of
around 2 minutes, which gives us a total running time around of
4-5 minutes (depending on the problem size).

We have tested our methods on instances provided by Tisza
Volán Zrt. The present practice of the company uses 264 drivers
for this planning period. Our results are summarized in Table 1
(the number of drivers, and the differences between the drivers
average daily working hours and their required working hours by
their contract type).

Table 1. Driver numbers and average working hour
differences from the contract types. Test cases show different

contract type settings.

Number of

drivers

min.
difference

(h)

max.
difference

(h)

average
difference

(h)

Test1 225 -0,05003 -0,00223 -0,01164

Test2 228 -0,1052 0,07445 0,000724

Test3 223 0 0,0626 0,013213

Test4 231 0 0,10063 0,026401

Test5 226 -0,09693 -0,00023 -0,02735

Test6 228 0,0032 0,054267 0,017737

It can be clearly seen, that the methods resulted in a significant
decrease in the number of drivers, while the average daily
working hours of a driver always stay close to the contract type of
the driver. The table only shows the total number of drivers for

each instance, however, this is always a sum of the drivers with
different type of contracts.

Each instance stands for a driver schedule with different cut and
join methods, for which we determined the inital set of drivers,
and executed some iterations of the driver rostering algorithm
until it improves the cost. The results we get after the last iteration
are the solutions of the problem. All values in the columns are
averages, which are calculated using the following method: the
monthly working time of each driver is divided by the number of
workdays in that month, resulting in a daily average working
time. Table 1 contains the minimum, maximum and average
differences from the corresponding contract types. Negative
numbers represent undertime, while positive numbers represent
overtime.

All test results (except for Test2) contain drivers of all 3 contract
types (8, 6 and 4 hours). The number of drivers with 6-hour
contracts is 4 in all cases, while the number of drivers with 4-hour
contracts greatly vary: 7 in Test4, 4 in Test3, 2 in Test5, 1 in
Test1 and Test6, and 0 in Test2.

The company always has higher number of drivers in their roster,
than they actually need. This way they always have enough
drivers, when needed (e.g sending people on vacation, or
unforeseen events).

5 CONCLUSION AND FUTURE WORK
This paper shows our results for solving the problems of both
driver scheduling and driver rostering in public transportation.
The algorithms we presented for the problems are both based on
the greedy strategy which guarantees a fast running time, while
the algorithms themselves give promising results on real-life
instances. The algorithm can execute different optimization
strategies through the process, and then compare the solutions
accordingly. This flexibility makes it more useful in industrial
usage.

Further improvement of the results is possible, using well chosen
heuristic techniques on the output of the driver rostering
algorithm. Currently a local-search based heuristic is being
perfected and tested which is able to correct a shift if it conflicts a
rule. This heuristic introduces a cost-function to every crucial rule
of the driver rostering, with certain weights depending on the
importance of the rule, and our goal is to minimize these costs.
The heuristic examines each day of the planning period, and is
able to swap the shifts of any two drivers on the given day. The
shifts are swapped, if it decreases the overall cost of the rostering,
and the algorithm has several termination criteria.

The introduced greedy methods are part of a research and
development project, currently in the research phase. The Matlab
implementation is mainly for research purposes, the methods will
be implemented in the final project using a C++ enviroment.

6 ACKNOWLEDGMENTS
This paper was partially supported by Szeged City Bus Company
(Tisza Volán, Urban Transport Division).

106

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

7 REFERENCES
[1] J. Békési, A. Brodnik, M. Krész, D. Pas: An Integrated

Framework for Bus Logistics Management: Case Studies.
Logistik Management 5., pp. 389-411, 2009.

[2] P. Cappanera, G. Gallo: A Multicommodity Flow Approach
to the Crew Rostering Problem, Operations Research 52. pp.
583-596. 2004.

[3] A. Caprara, F. Focacci, E. Lamma, P. Mello, M. Milano,P.
Toth, D. Vigo, Integrating constraint logic programming and
operations research techniques for the crew rostering
problem, Software Practice and Experience 28. pp. 49–76.
1998.

[4] A.T. Ernst, H. Jiang, M. Krishnamoorthy and D. Sier, Staff
scheduling and rostering: A review of applications, methods
and models, European Journal of Operational Research
153. pp. 3–27. 2004.

[5] N., Guerinik, M.V.m Caneghem: Solving Crew Scheduling
Problems by Constraint Programming. In Proceedings of the
1st Conference of Principles and Practice of Constraint
Programming pp. 481–498. 1995.

[6] M. Moz, M. Vaz Pato: A genetic algorithm approach to a
nurse rerostering problem, Computers & Operations
Research 34. pp. 667–691. 2007.

[7] Moz, M., Respcio, A., and Vaz Pato, M: Bi-objective
Evolutionary Heuristics for Bus Drivers Rostering, Working
paper 1-2007, Centro de Investigaao Operacional,
Universidade de Lisboa, 2007.

[8] K. Nurmi, J. Kyngäs, G. Post: Driver Rostering for Bus
Transit Companies. Engineering Letters 19:2, 2010

[9] R.S.K. Kwan, A.S.K. Kwan, and A. Wren: Evolutionary
driver scheduling with relief chains. Evolutionary
Computation 9. pp. 445–460. 2001.

107

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

108

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

A note on context-free grammars with rewriting
restrictions∗

Zsolt Gazdag
Department of Algorithms and their Applications

Faculty of Informatics
Eötvös Loránd University

Pázmány Péter sétány 1/C
H-1117 Budapest, Hungary
gazdagzs@inf.elte.hu

ABSTRACT
In this work two special types of random context grammars
are investigated. In one of these grammars one can apply
a context-free rule to a nonterminal A only if the current
sentential form does not contain a particular nonterminal
associated with A. The other grammar works in the op-
posite direction, it requires the presence of the associated
nonterminal to apply the rule. Here we show that these
systems can generate non-context-free languages.

1. INTRODUCTION
Context-free grammars are among the most investigated top-
ics in formal language theory. They were used first in the
study of human languages, but later it turned out that the
specification of programming languages can also be modelled
by these grammars. On the other hand, it is well known
that context-free grammars cannot cover all aspects of nat-
ural and programming languages. Therefore several types
of grammars that are based on context-free rules but have
larger generative power were introduced. This larger gener-
ative power is often achieved by adding a regulated rewrit-
ing mechanism to context-free grammars. Representatives
of these grammar systems are, for example, random context
grammars (see e.g. [3]). In these systems two sets of non-
terminals, a permitting and a forbidding one, are associated
with every context-free rule. A rule of a random context
grammar is applicable, if it is applicable in the context-free
sense and

(1) nonterminals from the associated forbidding set do not
occur, while

(2) every nonterminal from the permitting set does occur

∗This research was supported by the project TÁMOP-
4.2.1/B-09/1/KMR-2010-003 of Eötvös Loránd University.

in the current sentential form.

This simple regulation makes these systems computation-
ally complete if ε-rules are allowed. In [5] an even simpler
regulation on the application of context-free rules was made
and the resulting grammars were investigated. In this paper
we call these grammars context-free grammars with rewriting
restrictions.

These systems are in fact special random context grammars,
but here the permitting and forbidding sets are associated
with the nonterminals rather than the rules of the system.
Moreover, one of these sets is always a singleton set and the
other one is empty. In more detail, a context-free gram-
mar with rewriting restrictions is essentially a context-free
grammar G enriched with a function f which associates with
every nonterminal of G a nonterminal and a sign symbol (+
or −). We say that a rule rewriting the nonterminal A is
applicable if it is applicable in the context-free sense and,
additionally, the following holds. If f associates with A the
nonterminal B and the sign symbol − (resp. the sign symbol
+), then B does not occur (resp. does occur) in the current
sentential form.

It is shown in [5] that the above described systems are still
Turing-equivalent if the underlying context-free grammar
is not ε-free. On the other hand, it is noted in [5], that
these systems do not generate all recursively enumerable
languages if the system is such that f associates the sign
− with every nonterminal. The same applies when f as-
sociates the sign + with every nonterminal. Nevertheless,
these special types were not further investigated in [5]. In
this work we show that these special types can also generate
non-context-free languages.1

2. PRELIMINARIES
We assume that the reader is familiar with the basic concepts
of the formal language theory, such as alphabets, words,

1Here we note that, independently from us, an even stronger
result was proved in [2], but only in the permitting case,
i.e., when f associates the sign + with every nonterminal.
It was shown that in this case context-free grammars with
rewriting restrictions are equivalent to permitting random
context grammars, a subclass of random context grammars,
where the forbidding sets are all empty. A poster with this
result was presented at DLT 2010 conference [1] after the
submission of our work.

109

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

languages, etc. For comprehensive guides to these topics
the reader is referred to [4] and [6]. For an alphabet Σ,
Σ∗ denotes the set of all words over Σ. The empty word is
denoted by ε.

A context-free grammar (CFG in short) is a 4-tuple G =
(V,Σ, R, S) where V and Σ are alphabets of nonterminal and
terminal symbols, respectively (it is assumed that V ∩Σ = ∅),
S ∈ V is the start symbol, and R is a finite set of production
rules of the form A → α, where A ∈ V and α ∈ (V ∪ Σ)∗.
The derivation relation of G is defined as follows. For all
u1, u2, v ∈ (V ∪Σ)∗ and A ∈ V , we say that u1Au2 ⇒ u1vu2

if and only if there is a rule A → v in R. The reflexive,
transitive closure of ⇒ is denoted by ⇒∗. The language
generated by G is the language L(G) = {u ∈ Σ∗ | S ⇒∗ u }.
We say that a language is context-free (CF) if it is generated
by a CFG. The family of all CF languages is denoted by
L(CF).

A context-free grammar with rewriting restrictions
(CFGrr in short) is a tupleG = (V,Σ, R, S, f), where V,Σ, R, S
are the same as in a CFG and f : V → {+,−} × V is a
function. If, for every A ∈ V , f(A) ∈ {−} × V , then G
is a context-free grammar with forbidding rewriting restric-
tions (CFGfrr, for short). Likewise, if, for every A ∈ V ,
f(A) ∈ {+}×V , then G is a context-free grammar with per-
mitting rewriting restrictions (CFGprr). Since in a CFGfrr
(resp. CFGprr), for every nonterminal A, the first compo-
nent of f(A) is the symbol − (resp. +), we will define in
these grammars f as a function f : V → V .

The derivation relation of G is defined similarly to the case
of CFGs with the following additional restriction. For every
u1, u2 ∈ (V ∪ Σ)∗ and rule A → v ∈ R, u1Au2 ⇒ u1vu2

provided that either

(1) f(A) = (+, B) and B appears in u1Au2, or

(2) f(A) = (−, B) and B does not appear in u1Au2.

The language generated by G is defined in the same way as
in the case of CFGs.

Finally, we denote by L(CFGrr), L(CFGprr), and L(CFGfrr)
the families of languages generated by the corresponding
context-free grammars with rewriting restrictions.

3. THE MAIN RESULT
In this section we show that both CFGs with permitting
rewriting restrictions and CFGs with forbidding rewriting
restrictions are strictly more powerful than CFGs. We con-
sider first the forbidding case.

Theorem 1. L(CF) ⊂ L(CFGfrr).

Proof. It can be easily seen that L(CF) ⊆ L(CFGfrr).
Indeed, let G = (V,Σ, R, S) be a CFG. We can construct
an equivalent CFGfrr G′ = (V ′,Σ, R, S, f) as follows. Let
V ′ = V ∪ {∗} where ∗ is a new nonterminal symbol not
occurring in V and, for every A ∈ V , let f(A) = ∗. Clearly
∗ is a nonterminal that does not occur in the sentential forms

of the derivations of G′. Thus ∗ never blocks a derivation
of G′, which means that L(G) ⊆ L(G′). On the other hand,
L(G′) ⊆ L(G) also holds, thus we have L(G) = L(G′).

Next we give a CFGfrr Gf such that L(Gf) �∈ L(CF). The
terminal alphabet is {a, b, c, d,#, $} and Gf will generate,
among others, all words in {ai#cj$bkdl | i > k ≥ 0, j > l ≥
0} but no words in {ai#cj$bkdl | k ≥ i ≥ 0, l ≥ j ≥ 0}.
To achieve this, we do the following. The only rule that can
introduce the symbol # is such that after its application the
number of b′s cannot be increased after the position of #
in the sentential form. We construct a similar rule with the
symbol $ on the right-hand side.

Let Gf = (V,Σ, R, S, f) be a CFGfrr where

• V = {S,A,A1, B,B1, C, C1, D,D1},
• Σ = {a, b, c, d,#, $},
• f(S) = A1, f(A) = B1, f(B) = A, f(A1) = B,

f(B1) = A1, f(C) = D1, f(D) = C, f(C1) = D,
f(D1) = C1.

Moreover, let R be the following set of rules. R is divided
into three parts: R = R1 ∪R2 ∪R3 where

• R1 = {S → ACBD},
• R2 = {A → aA1 | ε, B → bB1 | ε, A1 → A |

#A1AB, B1 → B},
• R3 = {C → cC1 | ε, D → dD1 | ε, C1 → C |

$C1CD, D1 → D}.

We observe the following things. First of all, in every deriva-
tion of Gf , the rule S → ACBD is applied exactly once,
namely at the first derivation step. After that step the non-
terminal S does not occur again in the derivations. Thus the
forbidding nonterminal f(S) = A1 never blocks a derivation
step that involves S (this also means that we could have
chosen any nonterminal in V as f(S)).

Secondly, the rules in R2 and R3 work independently from
each other in the following sense. The nonterminals f(A),
f(A1), f(B), f(B1) do not occur in the right-hand sides of
the rules of R3, and similarly, f(C), f(C1), f(D), f(D1) do
not occur in the rules of R2. Thus applying a rule from
R2 cannot introduce a nonterminal that would block the
application of rules in R3 and vice versa.

Finally, we note that the structure of the rules in R2 is the
same as that of the rules in R3.

By the above observations, to see what words can be derived
from S, it is enough to examine those sub-derivations of Gf

that use rules from R2 only. Those sub-derivations that use
rules from R3 are similar. We will not describe the language
L(Gf) precisely as we are interested only in its intersection
with the regular language {ai#cj$bkdl | i, j, k, l ≥ 0}.

Clearly the first derivation step in every derivation of Gf is
S ⇒ ACBD. In the word ACBD the B cannot be rewritten

110

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

because of the presence of A. Thus we can apply only A→
aA1. Now A1 cannot be rewritten because of B, so we apply
B → bB1. Thus we have the sub-derivation

ACBD ⇒∗ aA1CbB1D.

By rules in R2 we can rewrite only A1. If we apply the rule
A1 → #A1AB, then we get the sentential form a#A1ABCbB1D.
In this case no rule from R2 can be applied (because of the
common presence of nonterminals A,B,A1, B1). Therefore
no word from Σ∗ can be derived in this way. Thus we chose
the rule A1 → A, then the rule B1 → B and get the following
sub-derivation:

aA1CbB1D ⇒∗ aACbBD.

Repeating the above applied rules, Gf can increase the num-
ber of a′s and b′s simultaneously.

Continuing our derivation, we apply the rule A→ aA1 (note
that A→ ε could be applied also) and then the rule B → ε.
In this way B1 did not appear in the sentential form, thus we
can apply now the rule A1 → #A1AB getting the following
derivation:

S ⇒∗ aACbBD ⇒∗ aaA1CbD ⇒ aa#A1ABCbD.

Now we have the situation when the number of a′s before
the symbol # still can be increased, but the number of b′s
in between the nonterminals C and D is fixed.

Next we continue by applying the rules A → ε, B → ε,
A1 → A, A→ ε that yields the following derivation:

S ⇒∗ aACbBD ⇒∗ aaA1CbD ⇒
aa#A1ABCbD ⇒∗ aa#CbD.

Finally, applying rules to aa#CbD from R3 similarly, we
can get, for example, the following derivation:

S ⇒∗ aa#CbD ⇒∗ aa#ccc$bdd.

Next we show that L(Gf) �∈ L(CF). Assume on the contrary
that L(Gf) ∈ L(CF). Note that there are words in L(Gf)
which do not contain the symbol # or $, and words which
contain more than one occurrence of # or $. To eliminate
these words from L(Gf) we define the regular language L =
{ai#cj$bkdl | i, j, k, l ≥ 0}. Clearly,

L′ := L(Gf) ∩ L = {ai#cj$bkdl | i > k, j > l}.
It is known that context-free languages are closed under the
intersection with regular languages (cf. e.g. Theorem 7.27
of [4]), thus L′ ∈ L(CF).

Next we define a homomorphism that erases the symbols #
and $ from the words of L′. Let h : Σ∗ → {a, b, c, d}∗ be the
homomorphism such that h(x) = x for every x ∈ {a, b, c, d},
and h(#) = h($) = ε. It is easy to see that

L′′ := h(L′) = {aicjbkdl | i > k, j > l}.
As context-free languages are also closed under homomor-
phisms (cf. e.g. Theorem 7.24 of [4]), we get that L′′ is in
L(CF). On the other hand, it is well known that L′′ is not a

context-free language. This is a contradiction that finishes
the proof of the theorem.

Next we show a similar result concerning the language class
L(CFGprr).

Theorem 2. L(CF) ⊂ L(CFGprr).

Proof. Clearly L(CF) ⊆ L(CFGprr), thus it is enough
to construct a CFGprr Gp such that L(Gp) �∈ L(CF).

Let Gp = (V,Σ, R, S, f) be a CFGprr where

• V = {S,A,A1, B,B1, C, C1, D,D1},
• Σ = {a, b, c, d},
• f(S) = S, f(A) = A, f(B) = A1, f(A1) = B1,

f(B1) = A, f(C) = C, f(D) = C1, f(C1) = D1,
f(D1) = C.

Again, R is divided into three parts: R = R1 ∪ R2 ∪ R3

where

• R1 = {S → ACBD},
• R2 = {A → aA1 | ε, B → bB1, A1 → A,

B1 → B | ε},
• R3 = {C → cC1 | ε, D → dD1, C1 → C,

D1 → D | ε}.

First we note that here, similarly to the case of Gf , the
application of the rules in R2 is independent from the appli-
cation of the rules in R3. The idea behind the construction
of Gp is the following. The rules with A as the left-hand
side can be applied always when A is in the sentential form.
However, if both A and B are in the sentential form, then
applying A→ ε stops the derivation as this way A1 cannot
be introduced and so B cannot be rewritten anymore. The
same applies to the nonterminals C and D. Thus Gp pro-
duces a’s and b’s simultaneously, and eventually applies the
rule B1 → ε. After this several a’s still can be produced
before the application of the rule A → ε. The derivation
goes in the same way concerning the nonterminals C and D.

Now, it can be seen that the language defined by Gp is the
language

{aicjbkdl | i ≥ k ≥ 1, j ≥ l ≥ 1}.
Clearly this language is not in L(CF).

4. CONCLUSION
We have considered two simple types of context-free gram-
mars with rewriting restrictions. These systems involve a
very simple regulation above the application of the rules.
Despite of this, they can still generate languages outside of
the class L(CF). This also means that the sets of derivation
trees of these systems are not recognizable by finite tree au-
tomata. It follows that even those powerful tree transducers

111

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

(macro and pebble tree transducers, for example) that in-
duce tree transformations with recognizable domains cannot
check whether the input tree is a valid derivation tree of a
CFGfrr or a CFGprr.

Concerning the future work, we think that the languages
in L(CFGfrr) are closed under the intersection with regular
languages. As they are also closed under homomorphisms,
proving the above result would yield that even the language
{aicjbkdl | i > k, j > l} is in L(CFGfrr).

It is known that permitting random context grammars are
equivalent to CFGs with permitting rewriting restrictions
(see [1]). It seems to be a challenging task to prove or dis-
prove the equivalence of forbidding random context gram-
mars (where the permitting sets are all empty) and CFGs
with forbidding rewriting restrictions.

Finally, as already mentioned, CFGs with permitting/for-
bidding rewriting restrictions are not Turing complete. It
is also interesting whether we can narrow down the class
of languages that they generate. We think we can show
that every language in L(CFGprr) is semilinear, but proving
that languages in L(CFGfrr) are also semilinear seems to
be difficult. We tried to simulate CFGs with forbidding
rewriting restrictions by several devices that can generate
only semilinear sets, but we did not succeed mainly because
of the following reason. CFGs with forbidding rewriting
restrictions always test whether the number of occurrences
of a nonterminal B in the current sentential form is zero or
not before applying a rule A→ α with f(A) = B. It seems
that these “zero tests” cannot be simulated easily by those
devices that can generate only semilinear sets.

5. ACKNOWLEDGEMENTS
The author is grateful for the useful comments and sugges-
tions of the referees, which led to the improvement of this
paper.

6. REFERENCES
[1] J. Dassow, T. Masopust. On Restricted Context-Free

Grammars. In Y. Gao, H. Lu, S. Seki, S. Yu (Eds.),
Proceedings of DLT 2010, pages 434–435, LNCS 6224,
2010.

[2] J. Dassow and T. Masopust. On restricted context-free
grammars. Unpublished manuscript.

[3] J. Dassow and Gh. Paun. Regulated Rewriting in
Formal Language Theory. Springer-Verlag, New York,
1990.

[4] J.E. Hopcroft, R. Motwani, and J.D. Ullman.
Introduction to automata theory, languages, and
computation, 2nd edition. Addison Wesley, 2000.

[5] T. Masopust. Simple restriction in context-free
rewriting. Journal of Computer and System Sciences
76:837–846, 2010.

[6] M. Sipser. Introduction to the Theory of Computation,
2nd edition. Thomson, Boston, 2006.

112

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Using Multigraphs in the Shallow Transfer Machine
Translation

Jernej Vičič
University of Primorska

Glagoljaška 8, SI-6000 Koper
jernej.vicic@upr.si

ABSTRACT
The paper presents a new architecture for a shallow-transfer rule
based machine translation system. The newly proposed architec-
ture keeps track of all translation candidates generated by the am-
biguities of the analysis phase. The architecture is based on multi-
graphs. The empirical evaluation shows that the new architecture
produces better translation quality results with constant delay in
time.

Keywords
Multigraph, Shallow transfer RBMT, Machine translation

1. INTRODUCTION
The paper presents a new architecture for a shallow-transfer rule
based machine translation system. The newly proposed architec-
ture does not cope with morphological and syntactical ambiguities
but keeps track of all possible translation candidates, thus retain-
ing all the information to the last phases of the translation process.
The architecture is based on multigraphs. A discussion about time
and space complexity of the proposed architecture, the algorithms
and the data structures is presented. An experimental system as a
proof of concept has been constructed on the basis of Apertium [2]
and language data for the language pair Slovenian-Serbian. The
rest of the paper is organised as follows: The domain description
is presented in the Section 2, the motivation for the research is pre-
sented in Section 3. The methodology is presented in Section 4,
space and time complexity of the presented data structures and al-
gorithms is presented in Section 5, empirical evaluation and results
are presented in Section 6 and conclusions in Section 7.

2. DOMAIN DESCRIPTION
2.1 Shallow Transfer Rule-Based MT
One of the methods, which guarantees relatively good results for
the translation of closely related languages is the method of a rule-
based shallow-transfer approach. It has a long tradition and it had

Figure 1: The modules of a typical shallow transfer translation sys-
tem. The systems [2, 8, 11, 12] follow this design.

been successfully used in a number of MT systems, the most no-
table of which is Apertium [2].
Shallow-transfer systems usually use a relatively linear and straight-
forward architecture where the analysis of a source language is usu-
ally limited to the morphemic level.
The Figure 1 shows the architecture of the most known translation
systems for related languages Apertium [2] and Česílko [8].
The monolingual dictionaries are used in the morphological pars-
ing of the source text by the morphological analyzer module and in
the generation of the translation text in the target language by the
morphological generator module. The Part Of Speech (POS) tagger
module is used to disambiguate the ambiguous output of the mor-
phological analyzer module. The bilingual dictionary is used for
word-by-word translation, in our case the translation is based on
lemmata. The shallow transfer rules are used to address local syn-
tactic and morphological rules such as local word agreement and
local word reordering. The module using the bilingual dictionary
and the shallow transfer rules is the structural transfer module. The
remaining modules deal with text formatting which is not domain
of this paper. All methods and materials discussed in this paper
were tested on a fully functional machine translation system based
on Guat [13], a translation system for related languages based on
Apertium [2].

The majority of the translation systems for related languages use
the shallow parsing machine translation architecture as shown in
[14]. Apertium is an open-source machine translation platform.
The platform provides a language-independent machine translation
engine, tools to manage the linguistic data necessary to build a ma-
chine translation system for a given language pair and linguistic
data.

113

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

2.1.1 Apertium
Apertium is an open-source machine translation platform, initially
aimed at related-language pairs but recently expanded to deal with
more divergent language pairs (such as English-Catalan). The plat-
form provides a language-independent machine translation engine,
tools to manage the linguistic data necessary to build a machine
translation system for a given language pair and linguistic data for
a growing number of language pairs. All these properties make
Apertium a perfect choice in a cost effective machine translation
system development.

2.1.2 GUAT
All methods and materials discussed in this paper were tested on
a fully functional machine translation system based on GUAT [15]
and [13], a translation system for related languages based on Aper-
tium [2]. The system GUAT was used as the sandbox for the imple-
mentation of proposed methods. Guat is automatically constructed
so there is still room for improvement mainly through data correc-
tion tasks. The basic architecture of the system follows the archi-
tecture of apertium [2] and is presented in the Figure 1.

2.2 Multigraph
In mathematics, a multigraph or pseudograph is a graph which is
permitted to have multiple parallel edges between nodes, that is,
edges that have the same start and end nodes. Thus two vertices
may be connected by more than one edge. Formally, a multigraph
G is an ordered pair G := (V,E) with:

• V a set of vertices or nodes,

• E a multiset of unordered pairs of vertices, called edges or
lines.

Such multigraphs allow compact description of all available trans-
lation hypotheses.

2.3 Java JUNG
The Java Universal Network/Graph Framework, JUNG, is an open-
source software library that provides a common and extendible
graph/network analysis and visualization framework. It is written
in Java. The JUNG architecture is designed to support a variety of
representations of entities and their relations, such as directed and
undirected graphs, multi-modal graphs, graphs with parallel edges,
and hypergraphs. It provides a mechanism for annotating graphs,
entities, and relations with metadata. This facilitates the creation of
analytic tools for complex data sets that can examine the relations
between entities as well as the metadata attached to each entity and
relation. There are a number of already implemented algorithms
from graph theory, data mining, and social network analysis al-
ready available in the library.
JUNG also provides a visualization framework that makes it easy
to construct tools for the interactive exploration of network data.

3. MOTIVATION
The shallow-transfer RBMT architecture usually exploits a mor-
phological disambiguator (tagger), which precedes any kind of more
or less deterministic transfer phase. This is obviously a huge lim-
itation, especially for lexical transfer, since in most language pairs
there are many words whose translation depends upon the syntac-
tic and/or semantic context. If the system contains some (shallow)

syntactic parser and/or structural transfer, they also tend to produce
ambiguous output relatively often.
The most important motivative reasons for this research are:

• The production of a new POS tagger, especially a good qual-
ity tagger, is not a simple task. One of the easiest methods
is training of a stochastic tagger based on HMM algorithm
[17]. Some parts of this task can be automatized using un-
supervised learning methods or supervised learning methods
like [1], but it still involves the selection of a new tag set, the
production of a tagged training corpus, testing of the corpus
and at the end the basic learning process.

• The quality level of the tagging process of today’s state-of-
the-art POS taggers for highly inflectional languages like [7]
and [5] is relatively low, comparing to the quality of POS tag-
gers for the analytical languages like the English language,
and also comparing to the overall quality of the translation
systems for related languages.

• According to the today’s most used designs for translation
systems for related languages, the shallow transfer transla-
tion systems, the disambiguation module follows the source
language morphological analysis at the beginning of the trans-
lation process. This design is shown on figure 1. Such de-
sign is adopted by Apertium [2] and Česílko [8]. Errors pro-
duced at the early stages of the translation process usually
cause bigger problems than errors introduced at latest phases
as later phases of the translation rely on the output of the
preceding phases.

• Multiple translation candidates allow selection of the best
candidates in the final phase when all available data for the
translation has been accumulated. The most common trans-
lation errors are fluency errors of the target language and
not adequacy errors. These errors commonly do not inter-
fere with the meaning of the translation but rather on the
grammatical correctness of the translation. They are mostly
caused by the errors in morphological analysis or morpho-
logical syntheses.

The omission of the tagger and introduction of a ranking scheme
based on target language statistical model as suggested in [9] yields
better translation results as suggested in the same paper. The intro-
duction of multiple translation candidates generated from all pos-
sible morphological ambiguities as suggested in [9] leads to an ex-
ponential growth of the number of possible translation candidates.
The paper [14] proposed a rule-based method for eliminating the
impossible translation candidates thus lowering the number of pos-
sible translation candidates. A statistical ranking method was used
to select an arbitrary number of best candidates. The rules were
automatically constructed.
The method proposed in this paper does not use any kind of statis-
tical ranking or any kind heuristics to avoid the exponential explo-
sion of possible translation candidates, all the candidates are con-
sidered and the best candidate selected in the last phase, the ranking
phase.

4. METHODOLOGY
4.1 Proposed architecture
The unified data structure would result in the rewrite of almost all
modules of the original Apertium system. One of the most ap-
pealing features of the Apertium system is the transparency of the

114

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

translation process. All data is shared in text form through simple
UNIX pipes resulting in an easy error discovery and easy debug-
ging. The proposed data structure would have to be serialized in a
human-readable form.
No change was made to the Apertium toolset for the means of the
presented experiment. A new module has been added to the ar-
chitecture, the Multigraph supervisor, which constructs the multi-
graph data structure and communicates with the Apertium mod-
ules through UNIX named pipes. The new architecture is presented
on the Figure 2. The Multigraph supervisor module constructs the
translation candidates by sending parts of the sentences, connecting
edges in the data structure, to the appropriate module and saves the
result in the same data structure gradually constructing all transla-
tion candidates. The data structure is further presented in the Sec-
tion 4.1.1.
The POS tagger module that handles the morphological disam-
biguation has been omitted from the architecture as all the ambi-
guities are stored and dealt with in the later modules.

Source text

De-formatter

Morphological
analyzer

Structural
transfer

Morphological
generator

Post-generator

Re-formatter

Target text

Ranker

Mult igraph
supervisor

Figure 2: The proposed new architecture of a shallow transfer RBMT
system using multigraphs. The Supervisor module uses the original
modules in the translation process.

4.1.1 The data structures
Two data structures based on multigraphs were used in the Multi-
graph supervisor module, the construction process and the most
distinct properties are presented in the Subsections following this
section.

4.1.2 Morphological analysis
The morphological analysis produces ambiguous results, there are
multiple Morpho-Syntactical descriptors - MSD [4] that can be at-
tributed to one word form, an example of an ambiguously tagged
sentence is presented in Figure 3.

The introduction of multiple translation candidates generated from
all possible morphological ambiguities as suggested in [9] leads to
an exponential growth of the number of possible translation candi-
dates.

The output of the morphological analysis is a set of all possible
morphological tags describing each word. Every word with more
than only one tag can be observed as a set of possible ambiguities.
In the case of highly inflectional languages like the pair presented
in this paper the number of ambiguous possibilities increases. The
set of all possible translation candidates is constructed as the vector
product of all ambiguous sets. The number of possible translation
candidates grows exponentially with the length of the sentence, the
equation 1 shows the upper limit of the number of possible transla-

Danes je lepo vreme.
Danes
Danes<adv>
je
biti<vbser><pres><p3><sg>
jesti<vblex><pres><p3><sg>
prpers<prn><subj><p3><f><sg><gen>
lepo
lep<adv>
lep<adj><f><sg><acc><pos>
lep<adj><f><sg><ins><pos>
lep<adj><nt><sg><acc><pos>
lep<adj><nt><sg><nom><pos>
vreme
vreme<n><nt><sg><acc>
vreme<n><nt><sg><nom>

Figure 3: The ambiguously tagged sentence Danes je lepo
vreme.

tion candidates.

|TC| =

|Smax|∏

i=0

xmax (1)

where TC is the set of possible translation candidates for the longest
sentence Smax and xmax is the biggest number of ambiguities for
a word. Although the equation 2, which shows the average number
of possible translation candidates, presents much lower numbers,
the complexity of the problem still remains exponential.

|TC| =

|S̄|∏

i=0

x̄ (2)

Equations 4.1.2 and 4 show empirical values for an example source
sentence and typical numbers collected from a corpus test-set.

|S̄| = 40 (3)

x̄ = 15

|TC| =
∏40

i=0 15 = 110, 573323209e+ 45

|S| = 15 (4)

x = 3

|TC| =
∏15

i=0 3 = 14, 348, 907

The data structure that can contain all the information produced by
the morphological analysis in a compact form and also enable easy
access to all translation candidates would be a multigraph, where
nodes represent word boundaries, edges represent all possible am-
biguous word forms. An example multigraph of the same example
sentence from Figure 3 is shown on Figure 4.

4.1.3 Structural transfer
The structural transfer rules are usually made in two parts; the
search pattern and action. We will concentrate on Apertium style
rules although the abstraction would apply to most systems. A

115

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Figure 4: The multiple possibilities of the morphological analysis are
stored in the edges of the multigraph. The example multigraph is con-
structed from the data on the Figure 3.

search through the Apertium systems 1 showed that the length of
3 suffices for more than 98% of rules. The linguistic explanation is
that the rules act in a very limited context.
Although we can safely use the length of the longest context of 3
in the majority of cases, we will abstract the length to an arbitrary
length lR.
In order to be able to apply the rules in the Left to Right Longest
Match (LRLM) which has been proven to be effective by [16], all
possible candidates of the length lR are constructed starting at the
beginning of the multigraph, as the one presented on the Figure 4,
and gradually moving to the last node of the multigraph. It can
be easily proven that this algorithm constructs a LRLM coverage
of all translation candidates. The candidates are sent to the struc-
tural transfer module and the result is stored in a new data structure
shown in the Figure 5. The value for lR has been set to 3 to simplify
the visualization of the data structure.

The Figure 5 shows a representation of the complex data structure
produced from the morphological output, presented in Figure 3,
and stored in the multigraph presented in Figure 4 All the morpho-
logical descriptions have been numbered. The paths connecting the
morphological descriptors have been constructed using these num-
bers. Let us observe the example on Figure 6 where the presented
trigram is represented by the string "000".

All strings finishing at a certain length are stored in the same col-
umn. The trigrams containing the morphological descriptors of
three adjacent word forms are stored in nodes, the edges will be
used to store the probabilities of the trigrams.

4.1.4 Morphological generation
1Apertium project at Sourceforge: http: //source-
forge.net/projects/apertium/

Figure 5: The data structure storing all the data from the Structural
transfer module.

Danes je lepo vreme.
Danes
Danes<adv> biti<vbser><pres><p3><sg> lep<adv>
000

Figure 6: The trigram is represented by the string "000"

The lexical units that were stored as n-grams in the complex data
structure are feed to the Morphological generator which generates
the linearized text. The data is stored in the same data structure.

4.1.5 Ranking
The ranking process simulates the trigram language model. The
process computes the probabilities for all trigrams and stores them
in the multigraph data-structure. The probability of the observed
trigram is stored to all the edges finishing in the observed node.
Any algorithm that produces the minimal path of the graph can be
used to find the best candidate, in this experiment the Dijkstra algo-
rithm [3] was used. The values on the edges of the graph have been
altered to reflect the technical constraints of the Dijkstra algorithm
(summation of the weights and only positive values). The values
were logarithmically and absolute values were taken into account.

5. SPACE AND TIME COMPLEXITY
A few definitions that will alleviate the discussion of the complexity
of the presented algorithms and data structures.
lR - longest rule pattern length
lS - longest sentence length
a - biggest number of ambiguities
The data structure presented in Section 4.1.2 is a multigraph with
lS number of nodes and |V | = a number of edges between two

116

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

nodes. The total number of edges:

|E| = lS ∗ a (5)

In numbers: setting the longest sentence to 30 words and the biggest
number of ambiguities for a word to 26 (from the corpus Multext-
east [6]). The total number of edges:

|E| = lS ∗ a = 30 ∗ 14 = 780 (6)

The total number of nodes:

|V | = 30 (7)

The data structure presented in Section 4.1.3 is a multigraph with
lS − lR + 1 number of sets of nodes, where each set of nodes can
have up to |V | = alR nodes. Each node is connected with up to
a edges (valence) to nodes in adjacent set of nodes. In numbers:
the Equation 8 and 9 presents the total number of nodes and the
Equation 9 presents the total number of edges using the same values
as presented in the previous example. The total number of nodes
for the multigraph data structure:

|V | = a
lR = 28 ∗ 143 = 76832 (8)

The total number of edges for the multigraph data structure:

|E| = 76832 ∗ a = 1075648 (9)

The worst-case scenario cannot be reached as most of the word
positions and POS variations are dependent.

6. EMPIRICAL EVALUATION AND AND RE-
SULTS

Two main goals were evaluated in this experiment:

• the change in the quality of the final results, the translations.

• the time complexity

The newly proposed system was compared to two already available
translation system for the same language pair:

• the original off-the shelf Apertium system with the Slovenian-
Serbian translation data, described in [13]

• to the system presented in the [14]

The later system uses a method to restrict the number of translation
candidates.

6.1 Translation quality comparison
The Word Recognition Rate - WRR metric, which is derived from
the edit-distance [10], was used to evaluate the translation quality.
The metric counts the number of deletions, insertions and substi-
tutions that need to be performed among the observed sequences,
i.e. count the number of edits needed to produce a correct target
sentence from automatically translated sentence. This procedure
shows how much work has to be done to produce a good transla-
tion. The metric roughly reflects the complexity of the post-editing
task. The evaluation task in both comparisons comprised of trans-
lating the test sentences using all translation systems and manually

correcting the output of the systems to a suitable translation. The
definition of a suitable translation understood in this experiment
is a translation that is syntactically correct and expresses the same
meaning as the source sentence.
The comparison between the system presented in this paper and
the [14] was done on the same test-set as the evaluation presented
in [14]. The test-set was relatively small due to the constraints of
the systems evaluated in the [14]. The test data for this part of
the experiment comprised of the 57 sentences. The sentences were
chosen by length (shorter sentences than 15 words). This limita-
tion enabled a fair comparison of the translation quality of all the
systems. The complexity of each sentence was arbitrary, there was
no special selection of the sentences using this criteria although
shorter sentences are usually simpler in structure. The results of
this part of the evaluation are presented in Figure 7.
GUAT original - the reference system, based on Apertium architec-
ture
GUAT all candidates - a system that kept all translation candidates
to the last phase (best translation performance, exponential growth
of possible translation candidates).
GUAT rules+ranker - the system with a method that restricted the
number of possible translation candidates in the starting phases of
the translation.
Multigraph - the system with the newly proposed architecture.

The comparison between the system presented in this paper and the
original GUAT system, which is based on the original Apertium
architecture, was done on a new test-set which comprised of 200
sentences randomly selected from [6] corpus. Both systems used
the same translation data, the construction process of the translation
data was described in [13] and the data is available at the Source-
forge2, The results of this part of the comparison are presented in
Figure 8. The system with the newly proposed architecture shows
an improvement over the reference system.

6.2 Time complexity
The empirical evaluation of the time complexity was done simulta-
neously with the evaluation of the translation quality. The test-data
is described in Section 6.1, which comprised of 200 sentences ran-
domly selected from [6] corpus. The tests were performed on a
personal computer3. Table 1 shows the time complexity compar-
ison between the original GUAT system and the newly proposed
system.

Table 1: Empirical evaluation of the time complexity. The
newly proposed system is roughly 6 times slower than the orig-
inal on the selected test sentences.

System: GUAT Multigraph
Nr. of sentences 200 200
Total time (seconds) 377.78 2239.56
Per translation 1.89 11.20
Ratio 1.00 5.93

Description of the Table 1:

2http://sourceforge.net/projects/apertium/
3Laptop computer with Intel Core 2 Duo 1.6GHz Processor and
2GB of memory

117

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Figure 7: The translation quality evaluation, using WRR metric, of the systems presented in [14]. The newly proposed system outperforms all
systems.

Figure 8: The translation quality evaluation, using WRR metric, of the GUAT system based on original Apertium architecture. The newly proposed
system outperforms the original system.

118

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

• GUAT - The reference system, based on [13]

• Multigraph - the system with the newly proposed architec-
ture.

• Total time (seconds) - the total time the system spent to trans-
late all 200 test sentences.

• Per translation - the average time spent per translation.

• Ratio - The ratio between the time spent by the reference sys-
tem - GUAT and the described system.

7. CONCLUSION
The presented architecture represents a viable solution to the prob-
lem of exponential growth of the number of possible translation
candidates in a non-disambiguated shallow transfer translation sys-
tem. The empirical evaluation showed an improvement in the trans-
lation quality compared to the original system and also compared
to the values presented in [14], which was an attempt to limit the
number of possible translation candidates. The empirical evalua-
tion also showed that the new system performed as well as a system
that included all possible translation candidates which shows that it
always selected the best translation candidate.
The empirical evaluation of the time consumption showed that the
new system performed roughly 6 times slower as the reference sys-
tem and the constant factor was present in all test examples showing
that the time complexity differed to a constant factor.
The proof-of-the-concept system has been implemented and it proved
to be working as expected. A true implementation of the newly pro-
posed architecture with the new module is already in the progress.
It will be incorporated into the Apertium framework.

8. REFERENCES
[1] T. Brants. TnT—a statistical part-of-speech tagger. In

Proceedings of the 6th Applied NLP Conference. Seattle,
WA, 2000.

[2] A. M. Corbi-Bellot, M. L. Forcada, and S. Ortiz-Rojas. An
open-source shallow-transfer machine translation engine for
the Romance languages of Spain. In Proceedings EAMT
conference, pages 79–86, May 2005.

[3] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[4] T. Erjavec. MULTEXT-East Version 3: Multilingual
Morphosyntactic Specifications, Lexicons and Corpora. In
Proc. of the Fourth Intl. Conf. on Language Resources and
Evaluation, LREC’04, 2004.

[5] T. Erjavec. Multilingual tokenisation, tagging, and
lemmatisation with totale. In Proceedings of the 9th
INTEX/NOOJ Conference, 2006.

[6] T. Erjavec. Multext-east version 4: Multilingual
morphosyntactic specifications, lexicons and corpora. In
LREC, 2010.

[7] J. Hajič. Morphological tagging: data vs. dictionaries. In
Proceedings of the North American chapter of the
Association for Computational Linguistics conference, 2000.

[8] J. Hajič, P. Homola, and V. Kuboň. A simple multilingual
machine translation system. In Proceedings of the MT
Summit IX, New Orleans, 2003.

[9] P. Homola and V. Kuboň. Improving machine translation
between closely related romance languages. In Proceedings
of EAMT, pages 72 – 77, 2008.

[10] V. Levenshtein. Binary codes capable of correcting deletions,
insertions and reversals. Doklady Akademii Nauk, pages
845–848, 1965.

[11] K. P. Scannell. Machine translation for closely related
language pairs. In Proceedings of the Workshop Strategies
for developing machine translation for minority languages,
2006.

[12] F. M. Tyers, L. Wiechetek, and T. Trosterud. Developing
prototypes for machine translation between two sámi
languages. In Proceedings of EAMT, 2009.

[13] J. Vičič and P. Homola. Speeding up the implementation
process of a shallow transfer machine translation system. In
Proceedings of the 14th EAMT Conference, pages 261–268,
Saint Raphael, France, 2010. European Association for
Machine Translation.

[14] J. Vičič, P. Homola, and V. Kuboň. A method to restrict the
blow-up of hypotheses of a non-disambiguated shallow
machine translation system. In RANLP, pages 1–8, Borovec,
Bulgaria, 2009.

[15] J. Vičič. Rapid development of data for shallow transfer rbmt
translation systems for highly inflective languages. In
Language technologies : proceedings of the conference,
pages 98–103, 2008.

[16] J. Vičič and M. L. Forcada. Comparing greedy and optimal
coverage strategies for shallow-transfer machine translation.
In Intelligent information systems XVI : proceedings of the
International IIS ‘08 conference, pages 307–316, 2008.

[17] L. R. Welch. Hidden markov models and the baum-welch
algorithm. IEEE Information Theory Society Newsletter,
53(4):1–14, 2003.

119

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

120

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Model Checking of the Slotted CSMA/CA MAC Protocol of
the IEEE 802.15.4 Standard

Zoltán L. Németh
Department of Computer Science

University of Szeged, Hungary
zlnemeth@inf.u-szeged.hu

ABSTRACT
We develop a verification model of the slotted CSMA/CA
MAC protocol of the IEEE 802.15.4 standard in the Spin
model checker. Then, we conduct experiments with varying
parameters and models. Guarded by our experiences we ar-
gue that model checking can be an adequate tool for analysis
of wireless sensor network protocols.

Keywords
Formal Verification, Model Checking, Wireless Sensor Net-
works, IEEE 802.15.4 Standard

1. INTRODUCTION
Wireless sensor networks, WSN for short, are rapidly de-
veloping new technologies with several military, industrial
and civilian applications, e.g., they are applied in battle-
field surveillance, habitat and environment monitoring, in-
dustrial and home automation [10]. WSN consist of small,
autonomous devices called motes. Motes are restricted in
several ways. They have limited energy resources (typically
batteries), limited computational power (typically microcon-
trollers with small amount of memory) and restricted com-
munication capabilities (typically short range radios of a few
tens of meters). Contrary to these restrictions of individual
motes, if they are organized into a (self organizing) network,
as a whole they are capable to accomplish tasks that other-
wise would be hard to achieve.

Since both the motes themselves and the tasks to be solved
can be very different, designing a WSN is usually a chal-
lenging task without predefined solutions. As in traditional
networking the design is usually divided into development
of protocol layers. But the analysis and the verification (of
correctness) of the protocol design are not yet well estab-
lished [13].

The usual methods in practice are simulation, emulation,
testing on real implementation and sometimes mathemati-

cal analysis [8], but all these methods have serious backwards
and limitations [13]. Therefore, considering new or comple-
mentary ways in WSN protocol verification is an interesting
research perspective.

The other subject of the paper is model checking [1,6]. This
is a verification technique that has been successfully applied
to prove correctness of hardware and software design in the
last few decades [5]. Thus, using this technique for verifi-
cation of WSN is naturally appealing. The present paper
investigates the possibility of this. This idea is not new,
there are some related papers, like [3,4,9,11,13]. But appli-
cation of model checking, or more generally that of formal
methods, in the field of WSN is far from being general. This
is mainly due to some serious obstacles discussed below.

The first problem is the hardness of faithful modeling. It is
obvious that model checking, like every model-based verifi-
cation technique, is at most as good as the underlying veri-
fication model is. But in WSN we must confront with some
very strange attributes that are extremely hard to model,
like nondeterminism, inherent broadcast nature and unpre-
dictable behavior of the radio communication, the lack of
precise timing, continuous motion and other highly dynamic
behaviors. Note that this is also an issue in simulations,
where it is known that imprecise simplifications of the char-
acteristics of WSN can lead to misleading results.

The second obstacle is the well known state space explo-
sions, that means that the number of states rapidly exceeds
computational limits due to the combinatorial blow up of
the state space when one increases the parameters, e.g., the
number of motes in the networks. There are several tech-
niques to overcome this problem, but it seems to remain the
main limitation of model checking in practice.

Therefore, we follow the approach presented in [2], and re-
gard our investigations as experiments. We would like to
argue that model checking can be an appropriate tool for
design and analysis WSN protocols and for tuning their pa-
rameters.

Our study concerns some aspects of the medium access con-
trol, MAC for short, protocol of the IEEE 802.15.4 stan-
dard [7]. The standard defines the physical and the MAC
layer of WSN. While the physical layer is generally accepted
and applied, the MAC layer is more discussed and its anal-
ysis is an active research area [4,8].

121

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

In the sequel we briefly introduce the slotted CSMA/CA
MAC protocol of the standard. Then, we develop a general
model of it in the Spin model checker [12]. After that, we
conduct experiments with varying parameters and models,
present our results, and finally derive some conclusions re-
garding both the behavior of the protocol and our modeling
experiences.

2. THE SLOTTED CSMA/CA ALGORITHM
OF THE IEEE 802.15.4. STANDARD

The IEEE 802.15.4 standard [7] specifies the physical layer
and the medium access control (MAC) sublayer for low-rate,
low-power personal area networks. Here we only describe
that part of it which is absolutely necessary to understand
our study. Moreover, we apply some simplifications as well.
The missing details can be found e.g., in [8].

We solely interested in the Carrier Sense Multiple Access
with Collision Avoidance (CSMA/CA) protocol of the stan-
dard. Motes use this algorithm to compete for medium ac-
cess. This is necessary, since if two or more motes trans-
mit at the same time, a collision occurs, which means that
we lose all the messages, as the receiver cannot decode any
of them. Moreover, unlike in wired networks, in wireless
communication collisions cannot be detected, since it is not
possible to listen while sending. Therefore, the protocol ap-
plies a collision avoidance method to reduce the number of
collisions.

This protocol is used when the network operates in a so
called beacon-enabled mode. This means that the coor-
dinator of the network periodically sends special control
messages, called beacons to maintain synchronization and
to control the network. The synchronization implies that
we can align all transmissions into specific time segments
called slots. Hence, this algorithm is also called the slotted
CSMA/CA protocol distinguishing it from the unslotted op-
eration mode used in other parts of the standard.

For our investigations we use a fixed time unit which equals
to the constant a unit backoff period defined in the stan-
dard. We will use this unit time length to measure every
time period, and assume that all message lengths and wait-
ing times are integer multiple of it.

The main goal of the protocol is to reduce the number of
collisions. For this every mote performs at least two Clear
Channel Assessment (CCA) operations before transmitting.
If the channel reported busy, a random waiting period, called
backoff is applied.

The (somewhat simplified) flowchart of the algorithm can be
seen in Fig 1. The main idea is the use of binary exponential
backoffs, i.e., in the case of a busy channel the algorithm
doubles the potential length of the next backoff.

Note that the constants MIN, MAX and RETRIES are referred in
the standard as MacMinBE, aMaxBE and macMaxCSMABackoffs,
in turn. The algorithm has three variables: NB denotes
the number of backoffs, CW is the length of the contention
window, and BE is the backoff exponent. If a mote has a
message to send, it first initializes the values of the variables,
then it waits for a random integer number of between 0 and

2BE − 1 time slots. Then, it performs CCA in the next time
slot. If the channel is busy, then the mote increases the value
of both NB and BE (but BE cannot exceed the value of MAX).
Now, if the NB is less than or equal to the constant RETRIES,
the mote performs a new random backoff and checks the
channel again. Otherwise, the algorithm reports failure. If
the channel is free, the mote only sends the message after
two successful CCA-s, since the length of the contention
window is 2. The reason for using a contention window is
that acknowledgement of successful transmissions may be
required. In that case there is always some pause between
the end of the message and the following acknowledgment.
Thus, a single CCA signaling clear channel cannot ensure
that both the message and its acknowledgement are ended.

3. MODELING
In our experiments we consider N motes in a star topology.
One mote, say M0, is the base station, the coordinator, that
controls the network and collects data from it. While the
other motes, say Mi for 1 ≤ i ≤ N− 1, sense data and send
them directly to the base station. For i > 0, at each mote
Mi the transmissions occur regularly with a given period
of Pi. This means that at the beginning of each Pi slots
a new package is generated that Mi intends to send. After
transmitting (or dropping) the package, if time remains until
the generation of the next package, Mi waits in an idle state
or may go to a sleeping state to save energy. Of course, if no
time remains, the mote immediately starts to send its next
package.

An essential component of every modeling is finding the right
abstraction. Aiming at this we show and briefly discuss
our model of the protocol used in the verification. Unfortu-
nately, limited space prevents us from covering all modeling
decisions in detail, but the main ideas can be seen in the
following outline:

1: for all i from 1 to N− 1 do

2: NB[i]← 0
3: T [i]← random(0..2MIN − 1)
4: end for

5: while not all T [i] = TIMELIMIT do

6: m← min
1≤i≤N

T [i]

7: COL←

{
true if ∃ i �= j : T [i] = T [j] = m;

false otherwise.

8: start← m+ CW

9: end← start+ LENGTH

10: for i from 1 to N− 1 do

11: if T [i] = m then

12: T [i]← end

13: NB[i]← 0
14: if not COL then SUCCESSFUL SEND
15: T [i]← TIME FOR THE NEXT CCA I.
16: else A COLLISION OCCURS
17: T [i]← TIME FOR THE NEXT CCA II.
18: end if

19: else

20: while T [i] < end do

21: if T [i] < start then

22: T [i]← start+ 1
� More than one CCA needed.

23: else T [i]← T [i] + 1
� The channel is busy at the first CCA.

122

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

NB=0, CW=2
BE=MIN

Locate backoff
period boundary

Delay for random
 0..2^BE-1 unit
backoff period

Perform CCA on
backoff period

boundary

Channel idle?

CW=2, NB=NB+1
BE=min(BE+1,MAX)

NB>RETRIES

Report failure

CW = CW-1

CW > 0 ?

Sucess,
send message

yes yes

yes

no

no

no

Figure 1: The CSMA/CA algorithm of the IEEE 802.15.4 standard

24: end if

25: NB[i]← NB[i] + 1
26: RETRYORDROPTHE PACKAGEAND
27: SET T [i] and NB[i] ACCORDINGLY.
28: end while

29: end if

30: end for

31: end while

The main idea is that we only store the time of the next
CCA for every mote. For this we use the variable T [i] for
Mi. In the initialization phase (lines 1-4) for each mote we
set a random backoff value before the first CCA. Then, until
all motes reach the time given by TIMELIMIT, the following
cycle is repeated (lines 5-31).

First, we determine the minimum of the T [i]-s and store this
value in m (line 6). Clearly, if there is a single mote with
T [i] = m, then, being the first, Mi will succeed in sending
its message. Otherwise, i.e., when there are more the one
motes with T [i] = m, a collision will occur (line 7). In any
case the channel will be busy between times start = m+ CW

and end = start+LENGTH (lines 8-9). In the next cycle (lines
10-30) we set the time of the next CCA for each mote Mi

as follows.

If Mi transmits, we first increase T [i] to end, then we com-
pute its time for the next CCA (line 11-18). This computa-
tion may depend on whether the network uses acknowledge-
ments or not.

If T [i] is greater than m, then Mi will not transmit. Instead,
it will find the channel busy, since it starts its CCA-s later
then m. If T [i] < start, this will happen at time start

resulting in more than one CCA. Otherwise, when T [i] ≥

start, only a single CCA will occur. We increase the value
of T [i] accordingly (lines 21-24). As the last CCA reports
the channel busy, we increase the backoff counter NB[i] (line
25). If NB[i] does not exceed the constant RETRIES, we add
a possibly longer random backoff to T [i], otherwise we retry
to send or drop the package depending on what variation of
the model we use (line 26-27). It is important to note that
in the case of not sending motes we may need to increase
T [i] several times, until it reaches end, since more the one
backoff can occur during a transmission of a (possibly long)
package (lines 20-28). But, as soon as all motes reach the
value of end, a new transmission(s) will happen, performed
by the mote(s) having a minimal actual value of T [i]. As
it was mentioned, we repeat the cycle (lines 5-31) until the
end of the predefined value of TIMELIMIT.

In reality the verification model is slightly more compli-
cated. E.g., approaching the TIMELIMIT we also need to
check whether there is enough time to send a message. If
not, the mote does not try to send, but defers the trans-
mission instead. This behavior conforms to the standard.
The modeling of the missing details as well as that of the
variations of the model is more or less straightforward.

For the actual verification we used the open-source model
checker Spin [6, 12], since its high level modeling language
ensures a flexible framework to implement our model. More-
over, it contains several built in optimization techniques to
support efficient verification.

One of the main question of this study is how to deal with
the nondeterministic nature of the protocol. First of all, the
best and the worst case behaviors of the protocol are unin-
teresting, since they can be determined easily, and consist
of rather particular choice of the random backoff periods, as
we shall see.

123

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

On the other hand the main benefit of model checking against
testing, simulation or mathematical analysis can be the fact
that in model checking we have control over the determinis-
tic choices. Next we show an example for this.

In the simplest case we assume that the goal of the pro-
tocol is to send at least X ≥ 0 messages successfully in
a given time frame. It is obvious, that in this situation
the worst case behavior happens, when all messages collide,
hence the network is unable to achieve a single success. On
the other hand, the best case behavior consists of only suc-
cessful transmissions one right after the other without any
collision. Thus, in the best case there are no collisions, while
in the worst case there are many. Therefore, the following
generalizations make sense (of course, for all natural num-
bers X and Y):

• Generalized worst case: W(X,Y): Do at most Y colli-
sions guarantee at least X successes?

• Generalized best case: B(X,Y): Is it possible to achieve
X successes with at least Y collisions?

For the purpose of model checking these properties can be
easily formalized as formulas of linear temporal logic:

W (X,Y) = �(COLL ≤ Y)→ �(SUCC ≥ X), (1)

B(X,Y) = �(SUCC ≥ X ∧ COLL ≥ Y). (2)

In the formulas above, of course, SUCC denotes the num-
ber of successfully sent packages, and COLL stands for the
number of collisions. Moreover, � is the always and � is the
eventually LTL operator, see e.g. [1].

We are interested in the maximal value of Y for any given
X defined by the W (X) and B(X) functions:

W (X) = max{Y |W (X,Y) is true for all possible runs.},

B(X) = max{Y | B(X,Y) is true for at least one run.}

Thus, W (X) (resp. B(X)) gives the maximal number of
collisions that guarantees (resp. allows) at least X successful
transmissions. We will call these functions the worst case
(resp. best case) behavior function of the protocol. These
values can be easily determined by the model checker using
repeated search.

For W (X) we need to find the maximal value of Y for which
property (1) holds. Technically, instead of starting from
0 and gradually increasing the value of Y , it is faster to
start form an upper bound for Y and to decrease it, un-
til the property is satisfied, since finding a counterexample
is generally an easier computational task than validating a
formula, which always requires the exploration of the whole
state space. If (1) does not hold even for Y = 0, then W (X)
is undefined, since thenX success cannot be guaranteed even
without any collision.

For the computation of B(X) we start from 0 and compute
the maximal value of Y for which the negation of property
(2) does not hold. The reason for using the negation is that
the generalized best case requires the existence of just a
single run, but the model checker always verifies all possible
execution sequences.

4. THE EXPERIMENTS
During the course of modeling one of our aims was gener-
ality. Therefore, we introduced the following values as pa-
rameters: N, the number of motes; P1, P2, . . . the periods
of message generation; LENGTH, the length of the messages
measured in slots; finally CWinit (the initial value of CW),
RETRIES, MIN, and MAX the parameters used in the stan-
dard.

Keeping the original protocol intact we considered two ques-
tions that affect significantly the behavior of the protocol.

1. Does the network employ an acknowledgement mech-
anism (i.e., does the sender make sure of successful
arrival of a packet after transmission)? If this is ap-
plied, the motes are aware of the collisions, and they
retry to send the collided packages.

2. Is there packet drop (i.e., after 1 + RETRIES numbers
of backoffs and unsuccessful CCA operations does the
sender drop the packet disregarding it permanently,
or doses it retry to transmit the packet performing
all the necessary steps of the protocol again from the
beginning)?

According to the answers to these questions we defined four
models, namely:

• M is without acknowledgement and packet drop,

• MAD is with both acknowledgement and packet drop,

• MA is with acknowledgement, but without packet drop,
and

• MD is without acknowledgement, but with packet drop.

In our first simple experiment we investigated the contention
resolution, i.e., a situation in which all motes have a message
to transmit at the same time. In this experiment the fixed
parameters were N=4, TIMELIMIT=54, P1 = P2 = P3 =54,
CWinit =2, MIN=2, and MAX=5. We varied the other param-
eters as follows: LENGTH=2, 4, 6, . . . , 16 and RETRIES=0,
1, . . . , 5. We investigated both the generalized best case and
worst case behaviors.

We computed the worst case behavior function W (X) and
the best case behavior function B(X) for X = 0, . . . , 3 and
for all possible values of the parameters LENGTH and RETRIES.
Some of the numerical results are presented in Table 1 and
Table 2 for RETRIES=1.

For example, the values 3 and 7 in the intersection of row
’X=2’ and column ’L = 4’ in Table 1 refer to the fact that
if RETRIES=1 and LENGTH=4, then during a TIMELIMIT=54
slots time period if the number of collisions is at most 3,
then at least ’X=2’ successful transitions are achieved (even
in the worst case), but ’X=2’ successful transitions can also
happen in the presence of at most 7 collisions (in the best
case).

124

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

X\L 2 4 6 8 10 12 14 16

0 − 13 − 9 − 6 − 5 − 4 − 3 − 3 − 3
1 6 12 5 8 3 5 3 4 2 3 2 2 1 2 1 2
2 5 11 3 7 2 4 1 3 1 2 1 1 0 1 0 1
3 4 10 2 6 1 3 0 2 0 1 − 0 − 0 − 0

Table 1: The generalized worst case (on the left) and

best case (on the right) behavior function of model

MA in the case of RETRIES = 1.

X\L 2 4 6 8 10 12 14 16

0 − 13 − 9 − 6 − 5 − 4 − 3 − 3 − 3
1 6 12 5 8 3 5 3 4 2 3 2 2 1 2 1 2
2 − 11 − 7 − 4 − 3 − − − − − − − −
3 − 10 − 6 − 3 − 2 − − − − − − − −

Table 2: The generalized worst case (on the left) and

best case (on the right) behavior function of model

MAD in the case of RETRIES = 1.

The other two models and the choice of the RETRIES param-
eter give similar numerical results, but instead of presenting
them, we give a text description of our observations.

First, the results clearly show the differences in the behaviors
of the four models.

The generalized best case behavior function of model M

is independent from both the value of the RETRIES, and
the LENGTH parameters. With one collision only one suc-
cess, without collisions three successes can be achieved. The
worst case behavior shows that, while collision freeness al-
ways ensures one success, two or three successes can only
be guaranteed for small values of the RETRIES parameters
especially for long messages. More precisely, two successes
are not possible, if LENGTH ≥ 14 and RETRIES ≥ 3. More-
over, three successes are not possible, if 2 ≤ LENGTH ≤ 4 and
RETRIES ≥ 3, or if 6 ≤ LENGTH ≤ 10 and RETRIES ≥ 2, or if
LENGTH = 12 and RETRIES ≥ 1, or if L ≥ 14. Thus, a large
value of the LENGTH and the RETRIES parameter even with-
out collisions can keep the model M from reaching a single
successful transmission.

Model MA applies acknowledgements, hence its behavior is
far more favorable. Its best case behavior is independent
from the value of RETRIES, on the contrary the worst case
behavior is dependent on it. The values of the worst case
(W (X)) and best case (B(X)) behavior functions are pre-
sented in Table 1 for different values of X (the number of
successes) and LENGTH. In the table the worst case values
refer to the case of RETRIES = 1. Again, increasing RETRIES

and LENGTH parameters causes the decrease of B(X).

Model MAD shows similar behavior, with the notable ex-
ception of that the presence of packet drops makes also the
best case dependent on the RETRIES parameter. But, now
the changes are caused by small values of RETRIES. E.g.,
the model is unable to achieve more then one success, if
RETRIES = 0; or RETRIES = 1 and LENGTH ≥ 10. Moreover,

more than 2 successes are not possible, if RETRIES ≤ 2 and
LENGTH ≥ 12. Similar differences occur in the worst case
behavior.

Finally, its not surprising that the behavior of MD differs
from that of M similarly as the behavior of MAD differs
from MA.

We also performed experiments with sending multiple mes-
sages both under balanced and unbalanced load conditions.
We obtained similar numerical data as in the previous ta-
bles.

In all, we performed more than 5000 model checking runs
lasting about 9 hours. Unfortunately, we were severely re-
stricted by memory limitations since the state space explo-
sion problem occurred even with relatively small values of
the parameters. For the verification we used an average PC
with 3GB RAM.

While finding a counterexample was generally easy and fast,
proving that no violating counterexample for a given formula
exists was sometimes hard. 69 of the total runs were termi-
nated by an “out of memory” error without fully completing
the search for counterexamples.

But the main problem is not the actual amount of memory,
which surely can be somewhat extended, but the exponential
growth of the state space when one increases the number of
motes (N). Our most complicated models (after several sim-
plification) still have approximately 30 million states, and
it seems impossible to exhaustively check models with more
the 100 million states. But, changing the value from N = 4
to N = 5 is definitely beyond this threshold. The approxi-
mation suggests that, if LENGTH = 16 and RETRIES = 5, then
the state space contains more than 1 billion states, that
would require more than 50GB RAM to store. In our opin-
ion, this explosion is due to the highly deterministic nature
of the protocol, that seems very hard to overcome.

5. CONCLUSIONS AND FUTURE WORK
In this paper our main goal was to point out the potential
of application of model checking for the analysis of WSN
protocols and for tuning their parameters. We developed a
verification model of the unslotted CSMA/CA MAC proto-
col of the IEEE 802.15.4 standard in the Spin model checker
and studied the best and worst case behaviour functions of
four basic models of the protocol with various parameter
settings.

The modeling gives us a general framework for the analysis
that can and should be extended in several directions. We
plan to consider deadlines for message transmissions, break-
ing down collisions and successes into individual motes, and
investigation of other performance metrics like latency and
energy consumptions. It would be very interesting if one
could also study problematic situations, like congestions,
and their causes in this framework.

Also, our modeling attempts were far from being exhaustive.
Further investigation is needed to explore the possibilities
and limitations of this kind of experiments. Finally, valida-
tion of our findings with an other method of analysis, like

125

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

simulation or testing on real implementations is necessary.
Nevertheless, we believe that model checking experiments
even with such restricted instances can help us to better
understand and explore the nonobvious behavior of WSN
protocols.

Acknowledgment
This research was partially supported by the TÁMOP-4.2.2
/08/1/2008-0008 program of the Hungarian National Devel-
opment Agency. The authors would like to thank Balázs
Lévai for writing script files for the verification.

6. REFERENCES
[1] C. Baier, J.-P. Katoen, Principles of Model Checking,

MIT Press, 2008.

[2] E. Brinksma, Verification is experimentation!, Int. J.
on Software Tools for Technology Transfer, 3(2001),
107–111.

[3] A. Fehnker and L. van Hoesel and A. Mader,
Modelling and Verification of the LMAC Protocol for
Wireless Sensor Networks, in: Integrated Formal
Methods, IFM 2007, LNCS, Vol. 4591, 253-272,
Springer, 2007.

[4] M. Fruth, Probabilistic Model Checking of Contention
Resolution in the IEEE 802.15.4 Low-Rate Wireless
Personal Area Network Protocol, in proc: ISoLA
2006, 290-297.

[5] O. Grumberg, H. Veith (Eds.), 25 Years of Model
Checking: History, Achievements, Perspectives,
Springer-Verlag, Berlin, Heidelberg, 2008

[6] G. J. Holzmann, The SPIN Model Checker: Primer
and Reference Manual, Addison- Wesley, 2003.

[7] IEEE 802.15 TG4, 802.15.4 Standard Part 15.4:
Wireless Medium Access Control (MAC) and Physical
Layer (PHY) Specifications for Low-Rate Wireless
Personal Area Networks, 2006.

[8] J. Mǐsić, V. B. Mǐsić, Wireless Personal Area
Networks: Performance, Interconnection, and Security
with IEEE 802.15. 4, Wiley Publ., 2008.

[9] P. Ölveczky, S. Thorvaldsen, Formal modeling,
performance estimation, and model checking of
wireless sensor network algorithms in Real-Time
Maude, Theor. Comput. Sci., 410(2-3), 254-280, 2009.

[10] V. Potdar, A. Sharif, E. Chang, Wireless Sensor
Networks: A Survey, AINA Workshops 2009, 636-641.

[11] O. Sharma, J. Lewis, A. Miller, A. Dearle, D.
Balasubramaniam, R. Morrison and J. Sventek,
Towards Verifying Correctness of Wireless Sensor
Network Applications Using Insense and Spin, in
proc.: Model Checking Software, SPIN Workshop
2009, LNCS Vol. 5578, 223-240.

[12] The SPIN Site, http://spinroot.com

[13] A. C. Viana, S. Maag, F. Zaidi, One step forward:
Linking Wireless Self-Organising Networks Validation
Techniques with Formal Testing Approaches, ACM
Computing Surveys, 43(2), 2011, Article 7.

126

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Experiment-based definitions for electronic exam systems

[Extended Abstract]

Andrea Huszti
Faculty of Informatics

University of Debrecen , Hungary
P.O. Box 12. H-4010 Debrecen

Hungarian Academy of Sciences and University of Debrecen , Hungary
huszti.andrea@inf.unideb.hu

ABSTRACT
We investigate security definitions for e-exam systems. Our
aim concerning security properties of e-exam schemes is bes-
ides achieving all requirements that the traditional paper-
based exam system provides to accomplish anonymity of
examinees and exam correctors. We construct formal expe-
riment-based definitions for authenticity, correctness, secrecy
and anonymity.

Keywords
electronic exam systems, anonymity, experiment-based defi-
nitions

1. INTRODUCTION
E-exam management is one of the most important building
blocks of an e-learning environment, it raises more security
issues then other parts of an e-learning software. There are
several papers [3, 8, 10] that detail design and non-formal
security issues of the proposed e-exam schemes, and few
commercial solutions [4, 7, 11] that do not describe secu-
rity measures.

We investigate security definitions for anonymous e-exam
systems, where exam questions might be multiple choice
tests and write in questions, as well. Hence besides exa-
minees, exam correctors are also participants. Providing
these definitions of the basic requirements, we give a for-
mal security framework for anonymous e-exam schemes, that
can be applied for proving security issues of any proposed
scheme. Our aim concerning security properties of e-exam
schemes is besides achieving all requirements that the tradi-
tional paper-based exam system provides to accomplish ano-
nymity of examinees and exam correctors. We construct for-
mal definitions for secrecy, providing confidentiality of exam
answers, correctness, ensuring that data transmitted is not
modified, anonymity, guaranteeing examinees and exam cor-
rectors stay anonymous during the process and authenticity,

stating that only eligible examinees and exam correctors are
allowed to participate.

We have chosen experiment-based technique, or sometimes
called game-based technique for constructing our definitions.
Applying these formal definitions security proofs of complex
cryptographic schemes become not that complicated, since
these definitions give a good direction that one has to follow
during the proof. We do not have to deal with too much
formalism either, like in logic based constructions ([1], [2]),
still we achieve reasonable level of mathematical correctness.
For proving security requirements of a complex cryptogra-
phic scheme we will use reduction method, meaning if un-
derlying cryptographic primitives are secure against certain
attacks, then the proposed scheme possesses a certain secu-
rity requirement. According to the reduction technique we
need to prove that if a scheme does not feature a security re-
quirement, then we can construct a machinery that breaks
the underlying assumption. Security is defined as a game
between an attacker and the system, that are probabilistic
processes communicating to each other. Security means that
the probability that a certain event occurs is negligible.

2. EXAM SCHEME
An exam scheme consists of three main stages: registration,
examination and grading stages. During registration stage
examinees (EX) and exam correctors (EC) prove their iden-
tity to Registry (R). For eligible participants pseudonyms
are generated that are authorized by R. In the examination
stage examinees receive exam questions and generates ans-
wers with time stamps that are sent to Examination Board
(EB) with their pseudonyms. After successful submission a
receipt is constructed for each examinee. After successful
submission of answersEB sends exam answers to exam cor-
rectors, who give a mark. During grading stage real identity
of examinees are revealed in order to insert the marks into
the exam administration database.

An exam scheme formally consists of the following algo-
rithms that output 0 if an error occurs:

register(i, SKR) −→ {pseudonymi, 0}, where i is an iden-
tity number of an examinee or exam corrector,SKR is
the secret key of R.

takeexam(questions, pseudonymi, SKTS) −→ {receipti, 0},
where SKTS is the secret key of Time Stamp Service

127

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Provider.

correct(exami, SKTS) −→ {(marki, checksum), 0}, where
checksum is verification information of grading

getidentity(pseudonymi) −→ {i, 0}

We define an exam scheme as
ExS={register, takeexam, correct, getidentity}.

3. EXPERIMENT-BASED DEFINITIONS
The basic requirements an electronic exam system should
possess are as follows: secrecy, correctness, anonymity and
authenticity. We consider passive and active adversaries.
Passive adversaries listen to channels and all information
on BB. We denote all this information by I. Active ad-
versaries collude with non-reliable participants, A(”control
participant”) describes the act of an active adversary. Ī
denotes data generated by A controlling some other partici-
pant. At the end of our experiments guesses are made with
knowledge of Î = I

⋃
Ī. We give maximal power to the

adversary in our definitions. In case of a concrete e-exam
protocol assumptions on participant’s reliability should be
fixed, that might cancel an attack. Let us describe these
requirements with details.

Our experiment-based definitions we use the following nota-
tion:

BB: Bulletin Board, a physical apparatus that is publicly re-
adable and only authorized participants are allowed to write
on it
I: all available data (e.g. public channels, BB) sent by hon-
est participants
Ī: all available data (e.g. public channels, BB) sent by A
Î: all data available
n/m: number of eligible examinees/exam correctors identi-
fied
n̄/m̄: number of ineligible examinees/exam correctors
n̂/m̂: number of examinees received a mark/exam correc-
tors gave a mark

Exam answers are kept secret. During examination stage
the generated answers are not revealed for an attacker. This
property protects against cheating.

In our experiment adversary A has access to register(),
takeexam(), correct() oracles, I contains all the output in-
formation of oracle queries. An oracle machine can be visu-
alized as a Turing machine with a black box, that is able to
calculate problems from any complexity classes in a single
operation. After successful registration of examinee j, the
adversary chooses examj0 and examj1 , runs functions
takeexam(.) and correct(.) with examjb , where b ∈ {0, 1} is
chosen randomly by the system. During running takeexam(.)
and correct(.) the adversary might collude with EB and get
more information. With knowledge of all available informa-
tion from communication channels and non-reliable partici-
pants A give guesses about b. If A gives good guesses with
non-negligible probability then the scheme does not possess
secrecy.

Experiment 1. Secrecy of exam answers
Expsecr−b

ExS,A (j),

{exami ← A(”choose exams”)}qi=1

{Ī ← Aregister(i,.),takeexam(pseudonymi,.),corrrect(exami,.)}qi=1

if register(j, .) �= 0 then
I ← register(j, .)
(examj0 , examj1) /∈ {exam1, . . . , examq} ← A(”choose exams”)
if takeexam(pseudonymj , .) �= 0 then
I ← takeexam(pseudonymj , .)
Ī ← A(”control EB”)
if correct(examjb , .) �= 0 then
I ← correct(examjb , .)
Ī ← A(”control EB”)
else
return 0
end if
else
return 0
end if
else
return 0
end if
d← A(knowledge of Î, ”guess b”)
return d

The advantage of an adversary A is

Advsecr
ExS,A(.) = |Pr[Expsecr−0

ExS,A (.) = 1]−Pr[Expsecr−1
ExS,A (.) = 1]|.

Definition 1. A scheme for electronic exam ExS posses-
ses property of secrecy if for any A ∈ PT ∗ the advantage
Advsecr

ExS,A(.) is negligible.

Examinees are not allowed to deny an already submitted
exam. Exam questions, answers and marks can not be alte-
red and after submission no one is allowed to modify them.

In our experiment A has access to oracles register(.),
takeexam(.), correct(.), getidentity(.) providing q samp-
les of outputs. Adversary runs register(.), takeexam(.)
and correct(.) with the system. During takeexam(.) and
correct(.) the adversary colludes withEB, his aim is to mo-
dify data transmitted or generate favorable data. If an ad-
versary succeeds in modification of honest participants’ data
or generating valid one, then experiment 2 outputs 1.

Experiment 2. Correctness

Expcorr
ExS,A(.)

{Ī ← Aregister(.),takeexam(.),corrrect(.),getidentity(.)}qi=1

for all i ∈ EC do
if register(i, .) �= 0 then
I ← register(i, .)
end if
end for
for all j ∈ EX do
if register(j, .) �= 0 then
I ← register(j, .)
if takeexam(questions, pseudonymj , .) �= 0 then
I ← takeexam(questions, pseudonymj , .)

128

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

Ī ← A(”control EB”)
if correct(examj , .) �= 0 then
I ← correct(examj , .)
Ī ← A(”control EB”)
if getidentity(pseudonymj) �= 0 then
I ← getidentity(pseudonymj)
else
return 0
end if
else
return 0
end if
else
return 0
end if
else
return 0
end if
end for
if I �⊆ Î then
return 1
else
return 0
end if

The advantage of an adversary A is

Advcorr
ExS,A(.) = 2 · Pr[Expcorr

ExS,A(.) = 1]− 1.

Definition 2. A scheme for electronic exam ExS possesses
property of correctness if for any A ∈ PT ∗ the advantage
Advcorr

ExS,A(.) is negligible.

Anonymity for examinees protects against partiality, me-
aning if an exam corrector knows whose exam he is correc-
ting, he might be subjective in his evaluation. Anonymity
of exam correctors prevents bribing and threatening attacks,
such that if an examinee knows who will correct her exam,
then she might pay the corrector some amount of money in
order to get a better grade. Anonymity means exam correc-
tors do not know which examinee’s paper they are correcting
and examinees do not know who corrects their papers, hence
examinees and exam correctors are possible adversaries.

In our experiment A has access to oracles register(.),
takeexam(.), correct(.), getidentity(.), gets all information
from oracle queries. A chooses two examinees or exam cor-
rectors, runs algorithm register(jb, .) with b ∈ {0, 1} chosen
by the system. Since we give definitions for pseudonym-
based e-exam schemes we assume that during registration R
is honest. However after registration we assume R andEB
might collude with A during takeexam(.) and correct(.).
Knowing all information available A gives a guess for the
chosen participant. Experiment 3 outputs 1, if A gives a
good guess.

Experiment 3. Anonymity

Expanon−b
ExS,A (.)

{i← A(”choose examinees/exam correctors”)}qi=1

{I ← Aregister(i,.),takeexam(pseudonymi,.),correct(.),getidentiy(.)}qi=1

(j0, j1)← A(”choose examinees/exam correctors”)
if register(jb, .) �= 0 then
I ← register(jb, .)
if takeexam(pseudonymjb , .) �= 0 then
I ← takeexam(pseudonymjb , .)
Ī ← A(”control EB”)
if correct(examjb , .) �= 0 then
I ← correct(examjb , .;)
Ī ← A(”control EB”)
else
return 0
end if
else
return 0
end if
else
return 0
end if
d← A(”guess b”)
return d

The advantage of an adversary A is

Advanon
ExS,A(.) = |Pr[Expanon−0

ExS,A (.) = 1]−Pr[Expanon−1
ExS,A (.) = 1]|.

Definition 3. A scheme for electronic exam ExS possesses
property of anonymity if for any A ∈ PT ∗ the advantage
Advanon

ExS,A(.) is negligible.

Let us detail the definition of authenticity. During the exa-
mination stage only eligible examinee’s answers and eligible
exam corrector’s marks are considered. Registry verifies
whether the sender is allowed to take or correct the exam.
Eligible participants possess pseudonyms authorized by Re-
gistry.

In our definition we assume that adversaries collude with
R after registration and grading stage, and with EB du-
ring examination. We state that an exam scheme provides
authenticity if by the end of the evaluation stage the gene-
rated and processed valid pseudonyms are more with non-
negligible probability than R has verified.

Experiment 4. Authenticity Expauth
ExS,A(.)

{Ī ← Aregister(.),takeexam(.),corrrect(.),getidentity(.)}qi=1

for all i ∈ EC do
if register(i, .) �= 0 then
I ← register(i, .)
end if
end for
for all (j ∈ EX) do
if register(j, .) �= 0 then
I ← register(j, .)
if takeexam(pseudonymj , .) �= 0 then
I ← takeexam(pseudonymj , .)
Ī ← A(”control EB”)
if correct(examj , .) �= 0 then
I ← correct(examj , .)
Ī ← A(”control EB”)

129

matcos-10 Proceedings of the 2010 Mini-Conference on Applied Theoretical Computer Science
Koper, Slovenia, 13–14 October

if getidentity(pseudonymj) �= 0 then
I ← getidentity(pseudonymj)
Ī ← A(”control EB,R”)
else
return 0
end if
else
return 0
end if
else
return 0
end if
else
return 0
end if
end for
if n+m < n̂+ m̂ then
return 1
else
return 0
end if

The advantage of an adversary A is

Advauth
ExS,A(.) = 2 · Pr[Expauth

ExS,A(.) = 1]− 1.

Definition 4. A scheme for electronic exam ExS has aut-
henticity if for any A ∈ PT ∗ the advantage Advauth

ExS,A(.)
is negligible.

4. PROPOSED SCHEME
After giving experiment-based security definitions for el-
ectronic exam systems, we also propose an exam scheme
that is secure under our definitions. Due to the restricted
number of pages, we do not detail it here. You can find
it in [9]. Our scheme is not strictly designed with concrete
cryptographic primitives, we require only that the applied
symmetric encryption scheme is IND-CPA secure [5], asym-
metric encryption scheme is IND-CCA secure [5] and digital
signature and message authentication scheme is secure aga-
inst UF-CMA attacks [6]. The scheme is going to be imple-
mented in a frame of project GOP-1.1.2-07/1-2008-0001.

4.1 Aknowledgement
The author is supported by TÁMOP 4.2.1-08/1-2008-003
project. The project is implemented through the New Hun-
gary Development Plan co-financed by the European So-
cial Fund, and the European Regional Development Fund.
The author is partially supported by the project GOP-1.1.2-
07/1-2008-0001 and also by the Hungarian National Foun-
dation for Scientific Research Grant No. K75566.

5. REFERENCES
[1] László Aszalós, Philippe Balbiani Logical aspects of

user authentication protocols, Proceeding of 7th seminar
RelMiCS, 2nd Workshop Kleene Algebra (2003), pp. 277
– 287.

[2] László Aszalós, Philippe Balbiani Some decidability
result for logic constructed for checking user
authentication protocols, Journal of Computer Science
and Control Systems (2008).

[3] J. Castella-Roca, J. Herrera-Joancomarti and A.
Dorca-Josa, A secure e-exam management system,
Proceeding of the First International Conference on
Availability, Reliability and Security (ARES’06) (2006),
pp. 864 – 871.

[4] ExamSoft Worldwide, http://www.examsoft.com.

[5] S. Goldwasser, S. Micali, Probabilistic encryption,
Journal of Computer and System Sciences, (1984), 28,
pp. 270 – 299.

[6] S. Goldwasser, S. Micali and R. Rivest, A digital
signature scheme secure against adaptive chosen-message
attacks, SIAM Journal on Computing, (1988), 17(2),
pp. 281 – 308.

[7] GurukulOnline Learning Solutions,
http://www.gurukulonline.co.in/index.htm.

[8] J. Herrera-Joancomarti, Josep Prieto-Blazquez, J.
Castella-Roca, A secure electronic examination protocol
using wireless networks, International Conference on
Information Technology: Coding and Computing
(ITCC’04) 2 (2004), pp. 263 – 267.

[9] A. Huszti, Experiment-based definitions for electronic
exam systems, to appear.

[10] A. Huszti, A. Pethő, A Secure Electronic Exam
System, Publicationes Mathematicae Debrecen, 77(3-4)
(2010), pp. 299 – 312.

[11] Software Secure, Securexam,
http://www.softwaresecure.com.

130

matcos-10

University of Primorska Press
www.hippocampus.si

ISBN 978-961-6832-10-6
Not for resale

	Preface
	Table of Contents
	Rigidity of Frameworks: Applications of Combinatorial Optimization to Statics
	Succinct Data Structures for Dynamic Strings
	Propagation Algorithms for Protein Classification
	Optimal and Reliable Covering of Planar Objects with Circles
	Truth-Teller–Liar Puzzles: A Genetic Algorithm Approach (With Tuning and Statistics)
	Bayesian Games on a Maxmin Network Router
	An Extensible Probe Architecture for Network Protocol Performance Measurement
	Detection and Visualization of Visible Surfaces
	Efficient Approach for Visualization of Large Cosmological Particle Datasets
	Prefix Transpositions on Binary and Ternary Strings
	Embedding of Complete and Nearly Complete Binary Trees into Hypercubes
	Information Set-Distance
	Better Bounds for the Bin Packing Problem with the ‘Largest Item in the Bottom’ Constraint
	Semi-on-Line Bin Packing: An Overview and an Improved Lower Bound
	Determining the Expected Runtime of an Exact Graph Coloring Algorithm
	Speeding up Exact Cover Algorithms by Preprocessing And Parallel Computation
	Community Detection and Its Use in Real Graphs
	Greedy Heuristics for Driver Scheduling and Rostering
	A Note on Context-Free Grammars with Rewriting Restrictions
	Using Multigraphs in the Shallow Transfer MachineTranslation
	Model Checking of the Slotted CSMA/CA MAC Protocol ofthe IEEE 802.15.4 Standard
	Experiment-Based Definitions for Electronic Exam Systems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002000d>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002000d>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d0033003a0032003000300033002d006b006f006d00700061007400690062006c0065006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002e0020005000440046002f0058002d00330020006900730074002000650069006e0065002000490053004f002d004e006f0072006d0020006600fc0072002000640065006e002000410075007300740061007500730063006800200076006f006e0020006700720061006600690073006300680065006e00200049006e00680061006c00740065006e002e0020005700650069007400650072006500200049006e0066006f0072006d006100740069006f006e0065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002f0058002d0033002d006b006f006d00700061007400690062006c0065006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002000660069006e00640065006e002000530069006500200069006d0020004100630072006f006200610074002d00480061006e00640062007500630068002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002c00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002000d>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e000d>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

